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ABSTRACT 
 
The Department of Defense relies on modeling and simulation for a variety of 

purposes, including joint exercise training, developing and evaluating doctrine and 

tactics, and studying weapon system effectiveness.  Advances in technology have made 

the achievement of technically and visually accurate simulations possible, but little has 

been done to present realistic scenarios while supporting user interaction.  This 

dissertation describes a multi-agent interactive simulation engine for generating 

interactive scenarios or stories.  A general-purpose multi-agent system simulation 

architecture, called a Connector-based Multi-Agent System (CMAS) is developed and 

presented, along with a software agent communication and coordination mechanism.  In 

this architecture, stories are generated through discovery as a by-product of agent 

interactions, rather than being fixed in advance.  The ensuing story adapts to the user’s 

interventions and is closely aligned to the goals of the agents.  The multi-agent system 

design of the story engine has resulted in a data-driven simulation engine, which is 

domain independent and highly scalable. 

     The story engine is fielded as the underlying simulation engine behind the U.S. 

Army’s America’s Army: Soldiers project.  The instantiation of the story engine as it 

applies to Soldiers is presented.  As a component of Soldiers, the story engine is an 

integral module in an interactive story generation system. 
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I. INTRODUCTION 
 

 
 “I like a good story well told. That is the reason I am sometimes forced to 
tell them myself.” 

 Mark Twain, 1907 
 

A. THESIS STATEMENT 
Highly dynamic, interactive stories can be generated by a multi-agent system as a 

by-product of agent interactions. These stories are sensitive to user input, the actions, 

goals and internal states of autonomous characters, and the global state of the 

environment.  By formulating the multi-agent system as a data-driven architecture, a 

domain independent story system can be developed that generates logically connected, 

goal-directed stories that are sound with respect to the domain of interest.  



 
 
 
 

 

2 

B. MOTIVATION 
In 1997 the National Research Council (NRC) issued a report that specified a 

joint research agenda for defense and entertainment modeling and simulation [NRC, 

1997].  The NRC report provides a guide as to what research and development needs to 

be done to develop future interactive entertainment and defense modeling and simulation 

systems.  For the entertainment industry, as stated in the NRC report, modeling and 

simulation technology lies at the heart of video games, theme park attractions, and 

entertainment centers.  The Department of Defense (DoD) uses modeling and simulation 

for a variety of purposes, such as to conduct joint training exercises, develop and evaluate 

new doctrine and tactics, analyze alternative force structures, and study the effectiveness 

of new weapons systems.  Advances in information technology have lowered the cost of 

computer-based models and simulation, making modeling and simulation a cost-effective 

alternative to live training and exercises.   

The NRC report identified five areas as having potential for greater collaboration 

between the entertainment industry and defense, one of which included computer-

generated characters.  It is in this area, specifically the control of such characters within 

the bounds of an interactive story, that this research focuses. 

C. PROBLEM STATEMENT 
An interactive story system should support a complicated story world comprised 

of characters and props, along with locations where events occur and characters interact 

with each other, the props, and their surroundings.  The interactions should not be 

random, nor should the characters be free to act as they wish without regard to the rest of 

the story world.  There are constraints on what can be done and how interactions occur.  

At the same time, it must be adaptable to multiple domains, whether it be presenting 

training scenarios in a ground combat simulation or an action-adventure story.  To make 

this story system interactive, allowances must be made for a user to intervene as the story 

progresses, while at the same time ensuring the story remains logically connected and 

aligned with the protagonist’s goals. 

Current approaches based on artificial intelligence top-down planning techniques 

can support complicated plots with a diverse set of story characters, but they are 

extremely domain-knowledge specific.  All possible character-to-character and character-
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to-environment interactions must be defined in advance along with a predefined story 

script or plan.  Extensive time and effort is required to generate knowledge bases and 

dependency networks for each new story [Schank and Abelson, 1977], [Young, 1999].  

Algorithmic approaches using tree or graph structures to organize story events provide a 

domain independent methodology, but for complicated stories, these approaches are 

overcome by the combinatorial problem of evaluating all possible plots each time an 

event occurs [Weyhrauch, 1997].  Similarly, if the story is highly scripted and the 

corresponding graph structure simplified, the resulting stories are akin to highly 

immersive hypertext documents where the branch points are tightly constrained in order 

to meet pedagogical goals or conform closely to the author’s story line [Marsella et al., 

2000], [Swartout et al., 2001].  

Thus, previous approaches have taken a largely top-down view of creating a story, 

where the author must in some way anticipate all actions the interactive user might take 

at each step of the story.   The problem of creating a general interactive story system is 

one of developing an architecture that scales well to large story worlds where all possible 

interactions may not be known a priori, while at the same time remaining domain 

independent.   

1. Definition of Interactive Story 
The following definition of interactive story is taken from Brenda Laurel’s 

dissertation Toward the Design of a Computer-Based Interactive Fantasy System. 

An interactive story is a first-person experience within a fantasy world, in 
which the user may create, enact, and observe a character whose choices 
and actions affect the course of events just as they might in a play.  The 
structure of the system ... enables first-person participation of the user in 
the development of the story or plot, and orchestrates system-controlled 
events and characters so as to move the action forward in a dramatically 
interesting way  [Laurel, 1986]. 

Her definition describes very well what an interactive story experience should be like and 

is a starting point for designing an interactive story system.  Laurel states that the system 

must “move the action forward in a dramatically interesting way.”  This implies the story 

is not being driven to a single predetermined ending; rather the climax and ending are 



 
 
 
 

 

4 

free to change as the story progresses.  The system strives to present the best story that 

emerges based on the user interaction, as opposed to presenting a specific story. 

2. Interactive Story 
For the purposes of discussion, it is assumed that a fully defined and functional 

“fantasy world” exists.  The existence of this world implies that there are laws and rules 

in place to govern the interactions and events in this world.  The world is populated with 

autonomous computer controlled characters, driven by internal goals and cognizant of the 

laws and rules of the world.  The autonomous characters are free to explore and 

manipulate the environment, again subject to the rules of the world.  The interactive user 

is a participating character in the world.  Like the autonomous characters, the user’s 

character is free to roam and interact in the story world.  The difference is that the goals, 

desires and actions of the user’s character are influenced not only by the environment and 

interactions with the other characters, but also directly by the user.   

The interaction of the user impacts the development of the story, but not at 

discrete points in an obtrusive way.  Rather, the user’s interaction serves to mold the plot 

in a continuous fashion.  Michael Mateas and Andrew Stern describe the evolution of an 

interactive story plot in their paper Towards Integrating Plot and Character for 

Interactive Drama.  They write:  

Changes in the plot should not be traceable to distinct branch points; the 
player will not be offered an occasional small number of obvious choices 
that force the plot in a different direction.  Rather, the plot should be 
smoothly mutable, varying in response to some global state which is itself 
a function of the many small actions performed by the player throughout 
the experience  [Mateas and Stern, 2000]. 

As the user interacts with the story world, the events and characters in the world 

are influenced so as to move the action forward in an interesting way.  The influence can 

be as subtle as a slight adjustment to a character’s personality to encourage a certain type 

of behavior, or as overt as overriding their goals to force an action that is in the best 

interest of the overall story.  Obviously the subtle approach is preferred.  

The challenges of presenting a compelling story in the face of interactivity are 

well documented [Bates, 1992], [Murray, 1998], [Weyhrauch, 1997], [Mateas and Stern 

2000], [Szilas, 2001].  A good story is well planned and scripted.  The author goes to 
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great lengths to ensure events unfold in a sequence that best captures the author’s desires 

and is interesting to the audience.  In the case of an interactive story, the task of writing 

and presenting the story is more complicated because the audience is one of the 

characters in the story (the interactive user).  In which case, the author must forfeit some 

measure of control over how the story plays out in exchange for interactivity.  This 

balance between author control and interactive freedom for the user is at the heart of 

developing an interactive story world capable of producing a large number of diverse 

story lines. 

In the model of interactive story presented in this dissertation, the author exerts a 

high level of control over developing the story world, but forfeits direct control over the 

events that occur (Figure 1).  The story world is defined through laws and rules that 

govern character-to-character and character-to-environment interactions.  Included in this 

definition of the world are the autonomous story characters with their own goals and 

personalities.  While direct control over the events is limited, the temporal relationship 

between events is established indirectly through the laws and rules imposed by the author 

on the story world.   
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Figure 1. Story World Diagram 
The story characters, including the character being influenced by the user, are 

turned loose in the story world.  The result is a story line that results from the interaction 

of the characters with each other, the environment and the user.  It is conceivable that a 

single story world could yield many different story lines.   

The character’s goals serve to focus the interactions so as to produce an 

“interesting” story, where “interesting” is relative to the story world domain and the 

objectives of the author.  If the system is designed for war-game scenarios, “interesting” 

may be defined in terms of the feasibility and uniqueness of the scenarios and how well 

they meet the training requirements.  If the desire is to present an action-adventure story, 

“interesting” may be defined in more classical narrative terms employed by screenplay 

writers and authors of fictional works.   
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3. Summary 
Interactive story concerns itself with building simulated worlds populated with 

autonomous characters and entities, within which the user participates in the story or 

simulation.  A significant amount of research has taken place in the area of building 

believable autonomous characters to populate the story world [Reilly, 1996], [Loyall 

1997], [Mateas, 1997], [Blumberg, 1996], [Hayes-Roth et al., 1996] and [Rickel et al., 

2001]. However, the body of work on developing systems where the story lines and 

scenarios adjust to the autonomous behavior of individual agents is smaller in scope 

[Weyhrauch, 1997], [Marsella et al., 2000], [Mateas and Stern, 2000] and [Swartout et 

al., 2001]. 

The goal of interactive simulation, whether it is a virtual story or a combat 

simulation, is to present the user with an experience that suspends their disbelief in the 

artificialities imposed by the system.  In this way, the user feels it is a “real” experience.  

From the DoD perspective, this results in more realistic and effective training, as well as 

more accurate assessments of the systems, tactics or doctrine being evaluated.   

The entertainment industry has long known that to achieve this suspension of 

disbelief, it is not sufficient to simply produce a technically accurate simulation.  It is the 

unfolding of events and presentation of the story, along with rich believable characters, 

that makes for a truly effective and immersive experience.  

D. APPROACH 
This research formally describes the architecture of MAISE (Multi-Agent 

Interactive Story Engine)1, a simulation engine that uses a multi-agent system (MAS) to 

produce interactive stories.  A domain specific story world is constructed from domain 

independent agent-based modeling constructs.  The constructs of tickets and connectors 

[Hiles et al., 2001] are combined with scenes and interactions to construct dynamic plans 

that manifest themselves as goal-directed stories.  The intention is not to tell a specific 

story, but to let the story unfold within the bounds of the story world based on the agents’ 

interactions with one another and the user’s interaction with the system.  A typical story 

consists of goal driven autonomous characters, props, constraints, and a collection of 

                                                 
1 For the remainder of the dissertation, MAISE is referred to simply as the story engine. 
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potential scenes, along with media, dialog, and character interactions to populate the 

scenes.  These story elements are combined dynamically at run-time to generate a story 

line that adapts to the user’s interventions and is closely aligned to the goals of the 

protagonist. 

In this architecture, story lines are a by-product of observing constraints defined 

on classes of agents within the simulation.  Thus, story lines are plans generated through 

discovery rather than following fixed plans defined beforehand.  The story lines are 

generated through a simulation process called connecting, whereby agents are bound 

together according to a “best-fit” axiom.  The by-product of the connection is the next 

scene in the story (or step in the plan).  In this way, dynamic story lines, or plans, are 

evolved as the simulation runs.  The bottom-up, MAS design of the story engine has 

resulted in a simulation engine that is domain independent and can be scaled to 

accommodate stories of any breadth and depth.   

The story engine is an instance of a larger family of simulations entitled 

Connector-based Multi-Agent System simulations (CMAS).  This dissertation formally 

presents the CMAS architecture, followed by the specific description as it applies to the 

story engine.   

Finally, the story engine was fielded as the underlying simulation engine behind 

the U. S. Army’s America’s Army: Soldiers (AA: Soldiers) project.  The instantiation of 

the story engine, as it applies to AA: Soldiers, is presented.  As a component of AA: 

Soldiers, the story engine is an integral module in an Interactive Story Generation System 

(ISGS) that is patterned on the model-view-controller architecture (Figure 2).  The story 

engine encompasses the model and controller, while the Scene Rendering Subsystem 

provides the view.  Interactive access to the story world, via the story engine, is provided 

by the graphical interface.  Development of the Scene Rendering Subsystem and 

graphical interface is outside the scope of this dissertation, however, they are described 

briefly in Chapter VI.   
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Figure 2. Interactive Story Generation System 

E. CONTRIBUTIONS 
This dissertation provides a fundamental new approach to generating interactive 

stories.  The following are the specific contributions of this research: 

• A formal description of a general-purpose multi-agent system architecture, 

called a Connector-based Multi-Agent System (CMAS). 

• A domain independent, scalable simulation architecture, based on the CMAS 

architecture, for generating logically connected and goal-directed interactive 

stories (Story Engine CMAS). 

• A bottom-up simulation methodology to discover novel and unexpected plans 

for achieving an agent’s goal(s). 
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• A formal description of an agent communication, coordination and control 

process based on connectors and connecting. 

F. DISSERTATION ORGANIZATION 
The remainder of this dissertation is organized as follows: 

• Chapter II.  Related Work.  This chapter is provided to give the reader a 

background on research conducted in the area of interactive narrative and 

multi-agent simulation planning systems.  The work that is most relevant to 

this dissertation is described in detail. 

• Chapter III.  Multi-Agent Systems.   Multi-agent systems are defined and a 

working framework describing multi-agent systems is presented.  This 

framework is based on work by Jaques Ferber [Ferber, 1999]. 

•  Chapter IV.  Multi-Agent System Research.  A survey of MOVES Institute 

computer generated autonomy research is presented along with a formal 

definition of connectors and tickets.  The research presented in this chapter is 

fundamental to the development of the interactive story engine. 

• Chapter V.  Connector-based Multi-Agent System Architecture.  This 

chapter brings together tickets, connectors and multi-agent systems to 

formulate a formal definition of a Connector-based Multi-Agent System 

(CMAS) architecture.  A simulation model is developed based on the process 

of connecting and the agent interaction that occurs during a connection.   

• Chapter VI.  Interactive Story Generation System.  The architecture of the 

story engine is presented in terms of the formal description of a Connector-

based Multi-Agent System (CMAS).  The story engine is combined with a 

real-time movie animator and generative text-to-voice system to create an 

Interactive Story Generation System (ISGS). 

• Chapter VII.  CMAS Data Set Implementation - America’s Army: 

Soldiers.  America’s Army is a suite of two PC based computer games 

developed for the U.S. Army intended to provide young people with accurate, 

easy-to-assimilate information about the Army.  America’s Army: Soldiers is a 

story-based role-playing game where a player guides a character through an 



 
 
 
 

 

11 

Army career.  This section describes the tickets, connectors, scenes and 

characters, including their goals and personalities used to create the story 

world.  America’s Army: Soldiers is presented as a proof-of-concept of this 

dissertation research. 

• Chapter VIII.  Conclusions and Recommendations.  The dissertation 

concludes with a summary of contributions and suggested applications for the 

story engine.  A number of avenues for follow-on work and extensions are 

also provided. 

 



 
 
 
 

 

12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



 
 
 
 

 

13 

II. RELATED WORK 
 

A. INTRODUCTION 
Stories have long played a central role in human culture.  Learning, 

communication, social interaction, arts and even recreation all center around stories.  

Before man could write, stories were used as a means of passing information from one 

generation to the next.  It was much easier for scholars to pass along important findings 

and key events in the culture’s history when they were organized and relayed as a story.  

Along with being used as a means of exchanging information, stories provide a 

framework for how we approach the world.  They provide meaning to the reams of data 

that flood our senses every day.  Through the use of stories, whether consciously or sub-

consciously, we make sense of the world.  We order its events and find meaning in them 

by assimilating them into familiar narratives. 

The media for relating stories has traditionally taken on familiar forms such as 

written work (rock wall carvings, ancient scrolls, books, magazines and newspapers), live 

performance (story-telling, theatrical plays and musicals) and cinema.  These forms all 

have one thing in common; they are intended to tell a story to a non-participating 

audience.  The stories are not written with the intention of changing the plot as the story 

progresses based on the desires of the audience.  From the moment the first scene opens, 

every act, every action, and every line of dialog is scripted to achieve the specific goals of 

the author. There are no mechanisms for the audience to influence the story as it is being 

told.  Why not?  Because it is very difficult from the literary perspective.  How does one 

tell or write a good story if they don’t know what the characters are going to do or how 

they are going to react, particularly when it is one of the main characters (the interactive 

user).  

This chapter examines alternative approaches that have been used in the 

interactive drama domain and related domains.  The evolution of interactive 

entertainment and story understanding and telling systems are also presented from the 

perspective of their influence on current approaches to interactive narrative.  Along the 

way, those efforts that best define the current state of research in the field of interactive 

story generation have been expanded upon.  Finally, this chapter lays the groundwork for 
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a multi-agent system simulation approach to generating stories by examining two agent-

based planning systems.   

B. NARRATIVE INTELLIGENCE 
Narrative Intelligence is a term that was coined by Marc Davis and Michael 

Travers of MIT’s Media Lab in 1990 to describe a field of study combining artificial 

intelligence and literary theory [Davis and Travers, 1997].  Their collaboration was the 

foundation of a group of students and faculty interested in pursuing interdisciplinary 

work at the intersection of artificial intelligence, literary theory, media studies, cognitive 

science and human-computer interaction design.  Drawing on a diverse range of 

influences, the researchers have explored a wide variety of topics relevant to narrative 

intelligence.  A number of common themes have emerged including; narrative as the 

basis for human-computer interface design [Laurel, 1991], intelligent agents using 

narrative structure to model aspects of human intelligence [Schank, 1990], story-

understanding systems, story-telling systems, interactive entertainment, and interactive 

drama. 

While the term Narrative Intelligence emerged in 1990, early foundations of this 

area of study are grounded in the field of artificial intelligence (AI).   

1. Artificial Intelligence Story Systems 
In the 1970’s and early 1980’s, there was a substantial amount of interest in story 

understanding and generation.  A research group at Yale, headed by Roger Schank, 

explored the use of scripts, plans and goals to understand narratives [Schank and 

Abelson, 1977].   Scripts and plans are a means for achieving goals.  Scripts are used to 

capture the notion of a stereotyped situation and the sequence of actions appropriate for 

the situation.  They are prepackaged sets of expectations, inferences, and knowledge that 

are applied in common situations.  For example, in a restaurant script, the sequence of 

actions of entering, finding a seat, ordering a meal from a server, the meal being prepared 

and served, eating, paying the bill and leaving the restaurant would constitute a script.  

Scripts provide rules for understanding the connectivity in a stereotypical situation.   

Since it is not possible to define a script for every possible situation, the notion of 

a “plan” was developed to deal with situations not previously encountered.  Plans are a 
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repository of general information and provide a means of connecting events that cannot 

be connected by the use of an available script.  They provide the mechanism for 

understanding events about which there is no specific information.   

The Yale group, as part of their work, developed a series of programs to help 

understand textual narratives.  These programs included SAM (Script Applier 

Mechanism), TAIL-SPIN [Meehan, 1976], and PAM (Plan Applier Mechanism). These 

early systems were intensely knowledge based, functioning in very limited domains.  To 

make them more general, extensive knowledge engineering would be required.  In 

addition, the plans were static; bound before the story ever began.  Discussion of the 

specifics of each program is presented in the following sections on story-understanding 

and story-telling. 

2. Story-Understanding Systems 
Story-understanding systems are systems designed to take as input a narrative 

discourse, and provide as output information about the story.  The information is 

normally shared as part of a two-way question and answer dialog between the user and 

the software program.  The goal is for the program to not only recite facts directly from 

the story, but also be able to provide the user with information that could be logically 

inferred from the story events.   

SAM was a program written at Yale designed to understand stories that rely 

heavily on scripts.  To understand the stories, SAM created a linked causal chain of what 

took place in each story.  A script applier then made inferences about events that must 

have occurred between events specifically mentioned.  This resulted in a large 

“conceptual dependency network.”  From this, the system was able to paraphrase the 

original story, expand the story with the inferred events, or summarize the story based on 

measures of the relative importance of events.  The network could also be queried to 

answer questions about the story. 

PAM was another story-understanding system, but unlike SAM, which was based 

on scripts, PAM was based on plans.  PAM used knowledge about goals and plans to 

discern the intentions of the characters in the story.  The program kept track of the goals 

of each character and interpreted their actions as means of achieving those goals.   
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3. Story-Telling Systems 
Unlike story-understanding programs, story-telling systems make no attempt at 

understanding the motivation behind the events and actions of the characters nor making 

inferences about why the events occurred.  TALE-SPIN is an example of an early story-

telling program written by Jim Meehan while a student at Yale in the mid-1970’s 

[Meehan, 1976].  TALE-SPIN made up non-interactive stories about animals by 

simulating a world, assigning goals to the characters, and describing what occurred when 

these characters interacted with other characters and objects in the environment in the 

pursuit of their goals.  It was used as a means of testing the goal and planning apparatus 

proposed by Schank’s group.  TALE-SPIN worked by first defining, in great detail, how 

a character might plan to accomplish a goal.  The system required explicit plans for every 

possible goal a character might wish to achieve.  Then, given a set of characters and a 

starting goal, the program could generate stories using its basic knowledge of the 

elements needed to construct a story, the elements of planning and achieving goals, 

knowledge of language structure, as well as general story world knowledge.  

AI planning techniques are still being explored today as models for narrative 

plots.  Michael Young, lead researcher at North Carolina State University’s Liquid 

Narrative Group is extending recent techniques in AI planning, including causal and 

hierarchical structures of plans, to capture the key features of narrative structure [Young, 

1999], [Young, 2000].   

C. NARRATIVE THEORY AND SCREENPLAY STRUCTURES 
The breadth and depth of literature on narrative theory, dating back to 330 BC 

[Aristotle, 330 BC], is sufficiently exhaustive so as to prevent a thorough review here.  

However, a brief, high-level description of story structure is presented.   

Story structure is often described as a dramatic arc where the vertical axis 

represents tension and the horizontal axis is time (Figure 3).  As the story progresses, 

tension builds and falls based on incidents and interactions in the story.  All the while the 

overall slope of the arc shows an increase in tension.  This continues until some crisis 

occurs resulting in the climax.  During the climax, questions are answered and the 

tensions are resolved.  
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Figure 3. Dramatic Structure 
Recent examinations of the movie industry and screenplay writing have produced 

a variety of multi-act structural models for representing dramatic arc.  These models fit 

well with the task of generating interactive stories, where the user’s view is more closely 

aligned with interacting in a movie or play than it is with reading a novel.   

In David Siegel’s essay The Nine-Act Structure [Siegel, 2001], he describes a 

general model for a movie’s structure based on either seven or nine acts (Figure 4).  His 

comparative analysis between his model and a number of recent movies indicates that a 

high percentage of top grossing films have followed the nine-act structure.  

Figure 4. David Siegel’s Nine-Act Structure from [Siegel, 2001] 

ACT 0: SOMEONE TOILS LATE INTO THE NIGHT.
ACT 1: START WITH AN IMAGE. 
ACT 2: SOMETHING BAD HAPPENS. 
ACT 3: MEET THE HERO. 
ACT 4: COMMITMENT. 
ACT 5: GO FOR THE WRONG GOAL. 
ACT 6: THE REVERSAL. 
ACT 7: GO FOR THE NEW GOAL.  
ACT 8: WRAP IT UP. 

THE NINE-ACT STRUCTURE 

FILM TIME 

GOOD FORTUNE 

BAD FORTUNE 
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At a more coarse level of granularity, Kristin Thompson presents a four-act 

structure for movie making [Thompson, 1999].  The acts include setup, complicating 

action, development, and climax.  In setup, the initial situation is presented.  This is often 

where the protagonist establishes one or more goals.  The complicating action takes the 

action in a new direction.  This may involve the protagonist pursuing a previously 

established goal in a new way, or possibly being faced with an entirely new goal or 

obstacle.  Development is recognized as the phase of the story where the protagonist 

works toward the achievement of their primary goal(s).  As the climax portion begins, the 

action shifts to straightforward progress toward a final resolution.   

Stuart Voytilla cites 50 major films produced over the past 70 years as evidence 

of Christopher Vogler’s movie storytelling model based on the protagonist’s journey 

through 12 stages of a story [Voytilla, 1999].  Metaphorically speaking, the 12 stages 

take the protagonist from their everyday life, to the acceptance of some challenge, 

through the struggles for achievement and finally back home.  Vogler’s “Hero’s Journey 

Model” is depicted in Figure 5.   

In spite of their apparent differences, each of these models is functionally 

equivalent, with the primary difference being the level of fidelity of the model.  The 

twelve phases of the hero’s journey relate directly to the four acts identified by 

Thompson.  Likewise, Siegel’s nine-act structure can be mapped onto a four-act 

structure.  Additionally, these models share a common link between the stages of the 

story and the central character’s goals.  In each case, transitions from one stage to the 

next are initiated by a goal shift on the part of the protagonist or another key character.   
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Figure 5. Vogler’s Hero’s Journey Model from [Voytilla, 1999] 

D. INTERACTIVE ENTERTAINMENT 

Interactive entertainment is a very general notion and determining what 

constitutes interactive entertainment is subjective.  For instance, all of the following can 

probably be considered a form of interactive entertainment: participating in an academic 

debate, coming to bat in a baseball game, and riding a magic carpet in Disney’s virtual 

theme ride Aladdin [Pausch et al., 1996].  For the purposes of this dissertation, the 

discussion is limited to interactive entertainment in the computer-based domain.  But 

even this encompasses a broad range of applications, including early adventure games, 

hypertext stories, video games, multi-user dungeons (MUDs) [Weyhrauch, 1997] and 

networked virtual environments, just to name a few.   
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Early forms of computer-based interactive entertainment took the form of text-

based adventure games.  In games such as Zork [Lebling et al., 1979], the user acts as an 

explorer and solves puzzles to gain additional information and achieve some end goal.  

The user would enter commands at the keyboard and the system responded with text 

output describing what the user could see, hear and feel.  This game presented an 

immersive text-based setting with its own consistent reality, but there was no real plot.  

Most of the stimulation came from solving the puzzles.  The user was provided with a 

sense of increasing anticipation as the level of difficulty increased.  But in the end, these 

systems did not tell a story, nor was telling a story of primary concern to the developers. 

The experience was interactive in that the user’s choices affected the events of the game, 

but the user did not really interact with the characters.  The source of interaction was the 

challenge of navigating through an unseen maze, in search of a single exit point.  Paths 

through the game either led to dead ends or to a single prized ending.  These programs 

were engaging in the mental challenge they presented their audience, but they provided 

little in the way of plot. 

Hypertext stories are somewhat similar to early adventure games in that the reader 

is presented a maze they must navigate.  Though in the case of hypertext stories, it is a 

maze of story pieces.  Hypertext trades some of the interactivity offered by the adventure 

games for a much stronger story structure.  The reader follows a path through the network 

of story pieces assembled by the author.  The interaction occurs as a result of the user 

selecting from a small number of choices at distinct branch points provided by the author 

via hyper-links.  Between each of the hyper-link branch points, the reading of the text is a 

linear experience.  While the user’s choices dictate the outcome of the story, it is the 

author who controls the flow.  The network of possible stories is established at compile 

time and is static, resulting in a small finite number of paths or stories.  Compare this to a 

collection of books where each book is based on a unique path through the network of the 

story pieces.  [Weyhrauch, 1997] describes a path through a hypertext story as analogous 

to reading a single book selected from the collection.  

Hypertext provides a solid story experience, but falls short of adventure games in 

its level of interactivity.  By providing the reader a small number of choices intermixed 
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between long periods of linear text, the reader rarely feels as though they are participating 

in the story.  The goal of interactive story is to immerse the user in the story world and 

make them feel as though they are an integral part of the action. 

Video games are an example of interactive entertainment that are high on 

interactivity and sensory input but low on story.  Playing these games can be a very 

powerful experience particularly with the advances in computer graphics.  These systems 

appear more and more lifelike with the introduction of each new generation of hardware, 

providing a powerful sense of immersion. Soon, a computer-generated scene will be 

comparable to a movie scene, at least from a visual sense.  While visuals are extremely 

important, they are only part of the experience.  On the whole, video games lack 

meaningful character interaction and have little or no story structure.  Even when there is 

an underlying story, it is merely to set the stage for the action and has little use 

throughout the remainder of the game.  Video games rely on visual, aural and haptic 

stimulation, along with highly interactive action to draw the user into the game.  An 

interactive story system strives to capture the immersive qualities of video games while 

providing meaning to the action. 

Finally, the interactive worlds of Multi-User Dungeons (MUDs) allow distant 

players on the Internet to share a common virtual space in which they can chat with one 

another.  Players improvise scenes together and imagine fictional worlds.  MUDs are 

environments for fantasy play that allow people to create and sustain elaborate fictional 

personas over long periods of time.  They are truly interactive in that they are meant to be 

experienced in the first person, not to be viewed or watched by an outside audience.  

However, MUDs fail as an interactive story because there is no consistent story behind 

the interactions.  It is much like improvisational acting where characters (users in role as 

their MUD persona) explore the environment, interacting with one another in a manner 

consistent with their fantasy role. 

While interactive entertainment can be highly immersive, it tends to regard 

interactivity and story as separate and almost incompatible.  Interactive drama strives to 

meld the two, whereby the story being presented is inextricably linked to the actions of 

the user.  
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E. INTERACTIVE STORIES 
Previous efforts at developing an interactive story system have met with limited 

success.  Brenda Laurel [Laurel, 1986] proposed a design for an interactive fantasy 

system, identifying the system components and necessary functionality, but a system was 

never developed.  More recent work as part of Carnegie Mellon University’s OZ Project 

introduced the notion of a plot graph, a partial ordering of plot events [Kelso et al., 1993] 

[Weyhrauch, 1997].  Weyhrauch used the plot graph as a foundation for searching all 

possible orderings of plot events in order to construct a story.  While this approach 

successfully showed that it was possible to build an interactive story, it did not scale well 

to more complicated stories.  The University of Southern California Institute for Creative 

Technologies (ICT) has developed a network-based approach to producing interactive 

training scenarios [Swartout et al., 2001].  ICT’s Mission Rehearsal Exercise (MRE) 

system allows users to experience a story in a highly immersive environment.  However, 

user interaction points are fixed and tightly constrained in order to ensure the story 

conforms closely to the training objectives of the scenario.  A more detailed description 

of these works is presented later in this chapter.   

Other approaches to computer-generated stories have explored the use of story 

pieces in the form of standalone audio, video or text clips, to tell a story.  Kevin Brooks 

of the Interactive Cinema Group at MIT’s Media Lab uses a single set of predefined story 

pieces to tell many different linear stories [Brooks, 1999].  He uses story agents to 

arrange the pieces, resulting in stories that take on the personality of the respective story 

agent.  

Developing a software program to tell a pre-scripted linear story might present 

some artistic challenges, but in the end it would be a straightforward effort.  This is 

because the software engine driving the story has complete knowledge of the script and 

can exercise total control over the environment and the characters.  When interactivity is 

introduced into the equation, the software no longer has control over the story.  One of 

the characters (the user) is now free to act based on what has previously occurred, their 

interpretation of these previous events, and their perceptions of where the story might be 

headed.  In spite of this, the system hasn’t necessarily forsaken all control.  It can limit 

what the user sees and constrain the user’s options so as to nudge the action in a 
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particular direction.  So the introduction of interactivity requires a tradeoff in narrative 

control.  At one extreme there is unbounded interactivity.  The danger here is that the user 

can be presented with so many options that they flounder aimlessly, never moving 

forward with a coherent story.  Alternatively, if the user is provided no flexibility, the 

experience is no different than watching a movie or reading a book.  In designing an 

architecture to control the flow of action in an interactive story, a balance must be struck 

between interactivity and narrative control. 

In his dissertation, Peter Weyhrauch describes four approaches to guiding the 

action in an interactive story system [Weyhrauch, 1997].  The first is to build an 

environment with a great deal of interactivity and action, but no drama component at all.  

The idea is that if there are enough things going on, then something interesting is bound 

to happen.  MUDs tend to fall into this category.  A second approach is the use of an 

implicit dramatic structure.  The structure follows from the characters and their goals.  

Video games and military simulations are examples of this approach.  In a military battle 

simulation, the two sides have goals of conquering each other; this provides an implicit 

structure to the action.  In these first two approaches, there is no real attempt to impart a 

narrative structure onto the action and interactions.  If a story emerges, it is a by-product 

of the action. 

The third approach Weyhrauch describes is a fixed story sequence.  The user has 

some level of freedom, but there is a central director that ensures fixed story events 

occur.  With this approach, narrative structure takes precedence over interactivity.  

Tinsley Galyean describes this as “narrative guiding interactivity” [Galyean, 1995].  The 

fourth approach is to use an explicit drama manager to guide the story events.  The drama 

manager provides input to the characters and adjusts the story environment to encourage 

the action to follow a narrative structure. 

These last two approaches to guiding action lead to two general categories of 

work in interactive narrative.  The first is aimed at creating and presenting a specific 

story.  That is, the user experiences the story the author has written.  While it is possible 

and desirable for the plot to adjust and react to the variations resulting from the user’s 

interaction, in the end, the author’s story is told.  The variations are constrained to ensure 
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that critical plot points are met.  The second category of work focuses on dynamically 

building a plot based on the user’s interaction.  In some sense, the user builds their own 

story.  The events and actions that occur are constrained both by the realm of possibility 

of the story world and an overriding, high-level narrative structure.  It is the function of 

the drama manager to impart the narrative structure on the events of the story world.  

1. Centralized Drama Manager 
The first formal description of an interactive story system based upon a 

centralized drama manager was presented by Brenda Laurel [Laurel, 1986].  Laurel 

proposed an “interactive fantasy” system whose primary components were comprised of 

a centralized drama manager, a world model (or story world), system characters with a 

rich set of personality traits, and an intelligent user interface into the story world.  At the 

heart of the system was a rule-based drama manager called PLAYWRIGHT.  It was 

PLAYWRIGHT’s job to give each character their formal specifications for the next 

incident.  In turn, the characters would provide their suggestions for action back to 

PLAYWRIGHT that would implement the first acceptable suggestion.  While Laurel’s 

system was a theoretical design and never implemented, it was the first thorough 

treatment of the issues involved with developing an interactive story system. 

A research group at Carnegie Mellon University has an ongoing project to 

develop an interactive drama system that seamlessly combines believable agents with an 

interactive story structure [Bates, 1992], [Kelso et al., 1993], [Mateas, 1997] and [Mateas 

and Stern, 2000].  This group, known as the Oz group, works with the overriding 

philosophy that drama is a combination of story, characters and presentation.  They focus 

on building worlds that give equal attention to believable agents, interactive plot and 

presentation.  Fundamental to their notion of an interactive plot is the use of a central 

drama manager.  Figure 6 shows the high-level architecture of the Oz project taken from 

[Mateas, 1997].  The world contains characters that exhibit rich personalities, emotion, 

social behavior, motivations and goals.  The user interacts with this world through a 

presentation medium.  Finally, the drama manager guides the experience of the user and 

makes things happen.  
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Figure 6. Oz Project Architecture from [Mateas, 1997] 
Central to the idea of interactive stories is the idea of believable characters. This 

section will touch upon the work with believable agents that populate the world, but will 

focus primarily on the drama manager. A more thorough treatment of believable agents 

can be found in [Loyall, 1997].  Likewise, much of the Oz project work on presentation 

deals with generating English narrative [Bates and Kantrowitz, 1992] and is not discussed 

here. 

a. Believable Agents 
First, the concept of “believable character” must be established.  A 

believable character is one who seems lifelike, whose actions make sense and who allows 

the user to suspend disbelief.  Note that nowhere in the description is anything said about 

realism.  For the purposes of drama and interactive stories, the character is believable if 

he or she remains in role and exhibits consistency of action, motivation and thought.  

Consistency is key to making a character believable.  As described in [Mateas, 1997]:  

A character may be smart or dumb, well adapted to its environment or 
poorly adapted.  But regardless of how “smart” a character is at dealing 
with their environment, everything they do, they do in their own personal 
style. 

Once a character is developed in a story, the user forms certain 

expectations as to how that character will behave and react.  The character must follow 

these expectations to remain believable in the eyes of the user.  An “out of character” 
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response or unwarranted action serves to break the users suspension of disbelief.  

Believable characters are just that, believable, they are not necessarily realistic. 

Bryan Loyall of the Oz group defined the following set of requirements 

for believable agents [Loyall, 1997]: 

• Personality – Personality describes the unique and specific things 
about the character and is what makes the character interesting. 

 
• Emotion – Characters must appear to have emotional reactions and 

have a means of expressing the emotions.  
 

• Self Motivation – The agents must not only react to external stimuli, 
but also engage in actions on their own accord.  They must be able to 
act based on internal drives and desires. 

 
• Change – Characters must grow and change over time consistent with 

their personality. 
 

• Social relationships – Characters interact with one another and these 
interactions are influenced by whatever relationships the characters 
have with one another.   

 
• Consistency of Expression – To be believable, every avenue of 

expression available to the agent must convey a unified message 
consistent with the agent’s personality and emotion. 

 
• Illusion of life – This is a collection of requirements that includes 

pursuing multiple goals, capable of parallel action (e.g., walk and talk 
at the same time), possessing capabilities such as movement and 
perception, and finally the ability to react to stimuli in the 
environment. 

 
These requirements led to the development of an agent architecture for 

believable agents called Hap [Loyall, 1997], [Bates, Loyall and Reilly, 1992], [Loyall 

and Bates, 1991].  Hap is both a language for defining agents and a software engine for 

controlling the agents.  The language allows the author to define goals, behaviors and 

actions.  At the heart of the architecture is an active behavior tree (ABT).  The ABT is 

the main processing data structure in a Hap agent.  Hap executes by repeatedly 

performing a multi-step loop that processes the ABT, expanding or shrinking the tree 

based on actions that have been completed, changes in the world and goals that have been 



 
 
 
 

 

27 

suspended.  Once the tree is updated, Hap chooses the next action for the agent from the 

set of available actions in the ABT. The selection is based upon an internalized priority 

scheme with preference given to working on the same goals and behaviors that the agent 

had been recently pursuing.  This priority scheme serves to maintain a sense of focused 

purpose to the agent’s activity.   

The follow-on to Hap, ABL (A Behavioral Language), is being used as the 

behavioral model for the believable agents in an interactive drama project entitled 

Façade.  ABL closely follows the Hap semantics.  A detailed description of ABL and the 

differences ABL and Hap can be found in [Mateas and Stern, 2002]. 

b. Drama Manager 
The purpose of the Oz drama manager is to sequence major story events 

(plot points) into a coherent story line, while taking into account the actions of the 

interactive user, thereby achieving an interactive plot.  The Moe architecture for dramatic 

guidance was developed for this purpose [Weyhrauch, 1997].  Moe functions by 

controlling the sequencing of major events (plot points) throughout the story.  Moe uses 

an adversarial search technique, not unlike those used by chess games, to generate 

sequences of plot points.  It then applies an evaluation function to rate each sequence.  

The highest rated sequence is used to select the next event in the story. 

A plot sequence is made up of Moe moves and user moves.  User moves 

are the actions that the interactive user can take in the story.  For example, in his 

dissertation [Weyhrauch, 1997], Weyhrauch uses a mystery story to demonstrate the Moe 

architecture.  Examples of possible user moves would be to search the murder scene, 

discover a piece of evidence or confront a suspect.  The set of all possible user moves are 

formed into a plot graph.  A plot graph is a partial ordering of story events linked together 

in a directed acyclic graph.  The plot graph provides a basic hierarchical structure to the 

events.  For instance, in the plot graph, the event of sending evidence to the crime lab for 

analysis comes after the event of finding the evidence.  The plot graph is used for 

generating a set of legal user moves from which to select the next move.  The actual 

selection occurs though the adversarial search according to an evaluation function.   

Moe moves are those actions the drama manager can take to guide the 

story and move it in a desired direction.  An example of a Moe move might be to create a 
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commotion so as to attract the user’s attention so they stumble across a piece of evidence.  

The intertwining of the Moe moves with the user moves results in a completed plot 

sequence or scenario.   

Weyhrauch developed an evaluation function to rate scenarios based on a 

weighted linear combination of the following seven factors: 

• Thought Flow – A measure of whether one user event relates logically 
to the next event. 

 
• Activity Flow – A measure of how bored the user might feel by 

moving around with nothing occurring. 
 

• Options – A measure of how much freedom of choice the user 
perceives they have. 

 
• Motivation – Measures whether the user’s actions are related to their 

active goals. 
 
• Momentum – Certain events make sense if they occur in close 

proximity to one another.  Momentum provides a measure for this.  
The story’s author determines which events are related and how close 
in time they should occur. 

 
• Intensity – Measures the building of excitement as the story 

progresses.  This captures the classical dramatic arc discussed earlier 
in the chapter. 

 
• Manipulation – A measure of how manipulated the user feels by the 

drama manager. 
 
It is important to note that the evaluation function only works on complete 

scenarios.  Logically, a scenario is made up of two parts; the first consists of the fixed 

sequence of events that have already occurred and the second is some sequencing of the 

events that have yet to occur.  Beginning with the sequence of events that have already 

occurred, an adversarial search technique is used to explore all possible sequences of 

events yet to occur (Moe and user moves).  The search tree is expanded by considering 

all possible Moe moves and legal user moves (the plot graph is used to determine which 

user moves are legal).  The expansion continues until every user move has been used.  

Each of these completed scenarios is evaluated, the best one selected, and this determines 
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the next move in the scenario.  The process then starts all over again.  This type of 

algorithm results in a tree with a tremendously high branching factor.  Even with a small 

number of user moves and Moe moves, the problem of searching the entire tree is 

intractable.  For example, with 15 user moves and 15 Moe moves, there can be as many 

as 30! (2.65x1032) scenarios that must be initially evaluated.  As the story progresses and 

the history of events becomes fixed, the complexity of the problem decreases, but not fast 

enough to make it manageable.  As a result, Weyhrauch developed two heuristics for 

rating scenarios in real time.  The details of the heuristics are not described here but can 

be found in [Weyhrauch, 1997]. 

Weyhrauch’s work showed that an interesting and dramatically appealing 

story can be presented while remaining true to the user’s interactive freedom.  However, 

the plot graph paradigm and use of an adversarial search with user and Moe moves does 

not scale well.  The architecture is quickly overcome by stories involving any sizeable 

number of plot events.  Additionally, his work required that every possible event in the 

story be defined in advance and that every one of these events be used in the final 

scenario.  

Using the Moe system, every story that occurs will consist of the same 

basic events, the only difference being how the events come about and in what order.  

The ending is always the same, only the path to that ending is variable.  It is this 

variability that is at the heart of the interactive nature of his architecture, but in the end, 

all paths must lead to the capture of the murderer.   

The multi-agent system based story world approach described in the 

previous chapter is intended to present an interesting story, given the characters and 

constraints of the story world, not a specific story.  In the case of a mystery, there are 

many good stories that can be told, not all of which end with the perpetrator being caught.  

For example in the 1999 film Entrapment with Sean Connery and Catherine Zeta-Jones, 

Connery plays a resourceful master thief and Zeta-Jones plays an insurance investigator 

who sets an elaborate trap to capture him [Ebert, 1999].  A traditional script would result 

in Connery being caught and sent to jail.  However, in the end Connery escapes capture 

by a strange twist of romantic intervention on the part of Zeta-Jones.  Within the story 
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world of Entrapment, it is not difficult to imagine other exciting stories with different 

conclusions.   

2. Dramatic Beats 
Recent work by Michael Mateas of the Oz group and Andrew Stern has moved 

away from the plot graph paradigm for sequencing story events [Mateas and Stern, 2000], 

[Mateas and Stern, 2002].  They propose the design of an architecture for integrating plot 

and characters that is based on a dramatic beat.  A beat is the smallest piece of dramatic 

action that can occur.  Scenes are composed of multiple beats.  The execution of a beat 

causes some “value” within the story environment to change, where a value is a property 

of an individual or relationship.  Associated with each beat is a set of preconditions 

necessary for the beat to occur, a description of the values to be changed by the beat, 

conditions used to determine success or failure of the beat, and joint plans to be carried 

out by the characters in order to execute the beat.  The joint plans are simply the 

behaviors necessary for the characters to carry out the beat.  

When the preconditions have been met for a specific beat to occur and that beat is 

chosen for execution, the drama manager accesses the “joint plans” for the specific beat 

and hands the appropriate characters their behaviors necessary to carry out the beat.  The 

plans have been designed to accomplish the beat.  This means that high-level goals and 

plans that drive an agent’s behavior do not reside within the agent, but are located in the 

beat.  The drama manager parcels out the behaviors and goals to the agents participating 

in the beat.  Low-level goals still reside within the agent (movement, personality moves, 

facial expressions, etc.).  A set of related beats necessary to complete some larger action 

are grouped together in a scene. 

A scene consists of preconditions, a description of the values intended to be 

changed by the scene, a collection of beats with which to construct the scene, and a 

description of the dramatic arc that should be followed within the scene.  Preconditions 

test whether the scene is appropriate given the current story and character state.   

Sequences of scenes are chosen by a drama manager.  At any given time, the story 

is in a certain state consisting of the current story values and other global state 

information such as active conversational topics, physical locations of characters, etc.  
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The drama manager is continually aware of the story state and chooses the next scene by 

examining the list of unused scenes and selecting the one that satisfies the preconditions 

and whose value changes best match the global plot arc. 

3. Directed Improvisation 
Barbara Hayes-Roth describes improvisation as “a particular form of theater in 

which actors spontaneously and cooperatively generate their stories and their characters 

at performance time under the constraints of directions from sources such as the 

audience, predefined scenarios and other actors” [Hayes-Roth and Rousseau, 1997].  

Stanford University’s Virtual Theater Project (VTP), under the direction of Barbara 

Hayes-Roth, has developed an architecture for building computer characters that perform 

directed improvisation.  Synthetic agents are provided as intelligent actors that improvise 

their behaviors without detailed planning.  The underlying agent architecture centers 

around a mind-body design.  The mind is the implementation of a social-psychological 

model integrating personality traits, moods and attitudes affecting interpersonal 

relationships.  The mind updates the agents’ knowledge based upon external inputs and 

stimuli, controls the agents decisions and provides input to the body.  The body is the 

expression of the actions selected by the mind [Hayes-Roth and Rousseau, 1997], [Hayes-

Roth et al., 1995]. 

There are two types of improvisation characters: autonomous actors and avatars.  

The avatar provides the user with an interface into the story world.  Both the actors and 

the avatar receive directions from a scenario and other actors.  The autonomous actors 

decide their behavior based solely on their personality, mood, attitude, and the received 

directions.  The avatar is primarily directed by the user who selects the actions to 

perform.  However, the manner in which the avatar carries out the selected action is 

determined by the avatar’s personality, mood and attitude.     

A predefined story scenario is used to impose a story structure on the action.  In 

an application of the Virtual Theater called CyberCafé, a restaurant scenario is applied 

with two autonomous actors and an avatar.  One autonomous actor is a waiter, the other is 

a customer.  The avatar plays another customer.  The scenario provides the high-level 

direction to the actors, so as to cause major events to occur in a prescribed order.  The 
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specific actions chosen by the autonomous actors to carry out the events are determined 

by the actor’s personality, mood, and attitude. Depending on the mood of the customer 

when the waiter brings his drink, the customer may do anything from throwing the drink 

back at the waiter, to thanking him and providing a tip. The variability in the selected 

actions manifests itself as improvisation.   

The work of the VTP deals with a specific type of drama, focusing heavily on 

character and less on variability in the plot.  In fact, the plot is defined in advance and 

remains static throughout the story.   

4. Verb-Centric Interactive Story-Telling 
In the Virtual Theater Project, Barbara Hayes-Roth capitalizes on the unique 

personality and motivations encoded into each agent to tell a story from a fixed script.  

The characters’ mannerisms and personalities are driven by their interactions with each 

other and the user’s avatar.  The stories are interactive because the agents’ moods and 

reactions are affected by the environment and the other characters.  The character 

interactions take on a story form through the imposed script.   

While still relying heavily on believable agents that react to their environment, the 

Oz project takes story plot a step further, allowing the plot to change based on previous 

events and the prognosis for the remaining events forming a good story.  Chris Crawford 

has designed a storytelling system, Erasmatron that takes a wholly unique approach to 

interactive storytelling [Crawford, 1999]. 

Crawford’s approach is founded in the assumption that storytelling is inextricably 

the function of an artist, for which no algorithm can be designed to truly replace the 

human story teller.  Storytelling relies heavily on contextual knowledge of the culture in 

which it is told.  Crawford states “Just as the meaning of language is steeped in culture, 

so too must the story teller integrate the story in the audience’s culture.  For this reason, 

interactive storytelling with all of its creative responsibility must always be the domain of 

the artist and not an algorithm” [Crawford, 1999]. 

Erasmatron, as described by Crawford, is a verb and sentence based system.  The 

story is organized around a master list of verbs for the story world.  For each verb, the 

author declares a set of character roles necessary to carry out the verb action.  For 
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instance, a sentence with an action verb clause of “assault” might have character roles of 

attacker, victim and bystander.  In this system, artistic functions are segregated from 

algorithmic functions.  The artist sets dramatic goals (artistic function) that require the 

characters to take action, while an algorithm handles the physical implementation or 

realization of the action.  Continuing with the verb clause “assault,” for the attacker to 

accomplish their goal they will need to move to the vicinity of the victim.  The artist 

initiated the character’s need to move, and an algorithm controls the character’s 

movement.   

Dramatic goals are established through inclination functions coded by the author.  

These functions form the basis of the character’s decision process.  When faced with a 

choice, the autonomous characters reference an inclination function to resolve the 

decision.  Erasmatron provides the environment for designing the story world, but the 

definition and coding of the inclination functions is left to the artist. 

While the system allows for complex behavior and artistic influence, Crawford 

acknowledges “I have been hoisted by my own petard in the matter of complexity; as yet, 

largely because of its complexity, not a single artist has completed creation of a viable 

story world using the Erasmatron!” [Crawford, 1999].  As a result, he has moved to an 

intermediate stage he calls “assisted storytelling.”  The latest version of Erasmatron has 

stepped back from requiring the artist to code inclination algorithms to govern the 

choices for the characters.  The artist’s role is now reduced to defining dramatically 

viable options for the characters, while the user makes the actual choices for the 

characters.  

5. Interactive Stories with Strong Pedagogical Goals 
As previously discussed, interactivity and plot can be balanced in a number of 

ways.  In Hayes-Roth’s VTP, interactivity is expressed through the diversity of agent 

responses to a given situation.  Interactivity occurs at the action selection level, while the 

basic plot remains unchanged.  In the Oz project, interactivity manifests itself at the plot 

level.  By defining a set of plot events and computer events that will tell the story, 

interactive input by the user impacts the sequencing of plot events in real time.  The 

script changes, but only in the ordering of events.  A dramatically appealing story 
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emerges as a result of the drama manager’s selection process of events.  In this section, 

two approaches are examined for presenting stories with strong pedagogical goals.  In 

both cases, achieving the prescribed learning objectives is of prime importance, as a 

result the interactive freedom of the participant is constrained to maintain the integrity of 

the script. 

a. A Story Deconstruction Approach to Interactive Drama  
A group of researchers from the Center for Advanced Research in 

Technology for Education (CARTE) at the University of Southern California’s 

Information Sciences Institute have been working on an agent-based approach to creating 

interactive pedagogical drama [Marsella et al., 2000].  In their system, interactivity is 

provided on two levels, the character level and the story event level, while the narrative 

structure of the story is maintained through a script deconstruction scheme.  Story 

characters are free to choose their actions autonomously, while director and 

cinematographer agents manage the action and its presentation in order to maintain story 

structure, achieve pedagogical goals and achieve the best dramatic effect.  There are four 

main components to the system: autonomous character agents, the user or person 

learning, a director agent and a cinematographer agent.  These components have been 

brought together in a multimedia title called Carmen’s Bright IDEAS. 

The story is provided in a “presentational” style where the user controls 

the intentions of one of the characters, but does not participate directly in the first person 

as a character.  This allows a level of interactivity specific to the user’s characters. 

Event level interactivity is introduced by starting with a full story script 

and successively decomposing it into smaller and smaller pieces, all the while identifying 

places where variability can be introduced while remaining true to the pedagogical goals 

of the script.  This allows interactivity in the plot while maintaining the story structure.  

Fundamental to the decomposition process is determining which variations are desirable, 

either from the pedagogical perspective or from the dramatic perspective.  This helps in 

defining the actions of the director agent to avoid undesirable variations.   

The script is a sequence of acts, where each act is a sequence of scenes.  

For a scene to be realized, certain events must occur within the scene.  The events 

themselves are motivated by the goals of the individual characters participating in the 
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scene.  The script is broken down into a hierarchical narrative structure, starting with the 

acts and continuing all the way down to analyzing the goals that can cause the events to 

occur that make up a scene.  Once decomposed, the designers determine where variability 

can be introduced.  For example, alternative scenes or a different ordering of scenes may 

be able to achieve the pedagogical goal of the act.  Similarly, different patterns of events 

can achieve the same scene goal.  

It is the job of the director agent to select the specific actions for the 

agents to present a dramatically appealing story.  The director in essence controls a 

discrete event driven simulation, where the discrete events are individual character dialog 

turns.  The director has global knowledge and selects the next event based upon the 

internal state of each character and state of the environment.  With this state information, 

the director selects the actions for the characters based upon the previous script 

decomposition.  

A cinematographer agent manages the presentation of events to maximize 

their dramatic impact.  The agent gets a filming description from the character agents at 

each dialog turn.  The filming description sets the action that needs to take place in the 

next turn.  The description contains information such as who is speaking, what is said 

(and how long it will take), non-verbal gestures that will occur, any dialog boxes 

(characters thought boxes) and flashbacks that must be shown.  Based on this, the agent 

references a set of predefined rules to determine what to show, how to show it and when. 

By starting with a well-defined script, the story remains true to the 

pedagogical goals while supporting interactivity at the plot level.  In essence, the 

decomposition process yields different means to the same end.   

b. Predefined Networks with Confined Freeplay 

The Institute for Creative Technologies at the University of Southern 

California is a U.S. Army funded institute with a mandate to bring together the resources 

and talents of the entertainment and game development industries with computer 

scientists in order to advance the state of immersive training simulation [ICT, 2002].  A 

keynote project of ICT is the Mission Rehearsal Exercise (MRE) system, a virtual reality 

training environment that combines virtual humans [Rickel et al., 2001], wide screen 

graphics and immersive audio to present a real-world training scenario.  Underlying the 
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MRE system is a network-based interactive story system called StoryNet [Swartout et al., 

2001]. 

As previously discussed, interactive narrative carries the inherent problem 

of balancing narrative control with interactivity.  In the case of military training systems 

such as the MRE system, this challenge is exacerbated by the need to ensure doctrinally 

correct training objectives are met.  These training requirements place an additional 

restriction on the level of interaction available to the participant.  ICT’s approach is 

similar to that used in CARTE’s Carmen’s Bright IDEAS.  The MRE system starts with a 

well-structured script that meets the prescribed pedagogical goals.  The script is then 

structured into a network of interactive “freeplay” nodes and linear transition links that 

are used to setup the follow-on “freeplay” node. Associated with each transition link are 

gating conditions used to determine when the participant has met the conditions 

necessary to transition to another node (Figure 7).   

In this system, the nodes correspond to tasks the participant in intended to 

learn, or key decision points in the scenario.  Within the nodes, the participant is free to 

interact with the virtual humans and make decisions.  Extending from each node are 

linear movie links.  Once the interaction is complete and the participant has met the 

gating conditions (either through a specific decision or completion of a task), they take on 

a passive role while being transported to the next node via one of the linear movie links.  

By limiting the options available in the freeplay nodes and the number of links extending 

from each node, the designers are able to control the scope of behaviors the system must 

handle. 
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Figure 7. StoryNet Architecture from [Swartout et al., 2001] 
The MRE system is an extremely effective training environment.  The 

8.75 by 31 ft. curved screen, coupled with intelligent characters, real-time animation and 

64-track spatial sound creates an almost holodeck-like environment.  However, this level 

of immersion comes at a price in terms of story complexity and plot variation.  Given the 

extensive scripting required to meet the training goals and develop movie links, 

expanding the system appears to be both time consuming and expensive.  Adding a new 

decision option to an existing node requires a script to be written and a linear movie 

developed for the associated outgoing link.  Similarly, if an entirely new node is added to 

the network (new decision or training objective), a host of links and supporting nodes 

must be added.   

F. AGENT-BASED PLANNING SYSTEMS 
Generally, multi-agent systems can be divided into two kinds of planning 

schemes: static and dynamic. Planning is considered dynamic if the plan evolves during 

execution of the simulation model. Static plans are pre-arranged, i.e., defined before 

simulation runs take place.  
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A hybrid approach combines static and dynamic planning as proposed by a 

number of others, most recently in MEAGENT [Rowe et al., 2000], [Andrade, 2000]. 

MEAGENT is a Prolog system using means-ends analysis.  MEAGENT agents are given 

tree-structured plans by their designers, but then allowed to adapt. Agents are given plans 

that are designed to seek goals by dividing the goal into sub-goals, and sub-goals into 

smaller sub-goals, etc. The root of the goal tree represents achievement of the top goal, 

and the leaves of each tree represent one step in achieving a sub-goal. When appropriate, 

the tree is re-structured, dynamically, in a process that Rowe and Andrade call “re-

planning.” Re-planning in MEAGENT was used in training sailors how to fight fires 

onboard ships. 

MEAGENT adapts to unexpected events during the simulation, but it does not 

invent plans. Each simulation run begins with a static pre-defined plan (goal tree), which 

must be designed by the human operator. While means-ends analysis provides flexibility 

and adaptability, it doesn’t solve the problem of plan discovery. 

Another approach that is closely related to this work is PLANGENT [Oshuga et 

al., 1997]. Mobile agents in PLANGENT have planning capabilities that are a by-product 

of adapting to new web-based environments. The authors claim that this kind of 

adaptability and re-planning make agents “intelligent.” 

According to [Oshuga et al., 1997],  

PLANGENT has an advanced planning feature – specifically, a technique 
that uses backward reasoning from declarative statements of user 
requirements to generate sequences of actions that will satisfy the 
requirements. The planning mechanism is reflective, that is, agents can 
execute metalevel planning, or meta-planning. 

PLANGENT allows incomplete plans, thus, actions can be delayed until 

additional information is gathered by the mobile agent, and the action resolved during 

execution. PLANGENT agents can make a least commitment plan that delays definition 

of which action to perform until the agent has visited enough web sites to decide. Still, 

plans are limited by top-level requirements as defined by the user. PLANGENT’s 

dynamic planning steps are described in Figure 8. 
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1. Express user requirements in terms of constants, 
variables, and predicates. 

2. Initialize a plan as a set of actions and constraints. 
3. The agent tries to satisfy an un-realized goal by 

choosing an action from a plan or by choosing an action 
that is not in its original plan. 

4. If an action was selected in step 3 that is not in an 
original plan, that action is considered a threat if it 
breaks the consistency of the original plan. A threat 
action is handled by gathering more information or 
backtracking. If no more actions are available, the 
agent backtracks to step 3. 

5. The current plan is executed. 
6. Generate a metaplan: If pre or post conditions are not 

met, declare failure. If infinite loops are found, 
terminate the planning process. If failure, re-planning 
is required. 

Figure 8. PLANGENT Planning Steps from [Oshuga et al., 1997] 
PLANGENT has been applied to airline reservation systems where goals are 

destinations, travel dates and times, and constraints are cost, etc. Plans are represented as 

trees with sub-goals derived from top-level user input requirements. 

G. SUMMARY 
In this chapter, work related to the design and implementation of interactive story 

systems was presented.  An overview of interactive entertainment and narrative 

intelligence was provided along with a description of plan-based story-telling and story-

understanding systems.  While this work served as a forerunner to interactive stories, 

many other fields of study have played key roles or provided motivation behind research 

into developing interactive story systems. Some of these include human-computer 

interface design [Laurel, 1991], knowledge understanding and representation [Schank 

and Abelson, 1977], AI planning [Young, Pollack, & Moore, 1994], narrative theory 

[Aristotle, 330 BC] [Freytag, 1900] [Polti, 1977] and interactive cinema [Brooks, 1999] 

[Davenport et al., 2000].  The range of influence is too great to present a thorough 

treatment of each of these in this dissertation. 

The interactive story systems presented in this section were described with an 

emphasis on the approach used to balance interactivity with narrative control to present a 

story.  This examination reveals that existing systems either don’t scale to large 

complicated stories (i.e., only a small number of stories are possible), or they are based 

on a fixed plot.  A scalable architecture supporting variable story lines that can be 
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adapted to multiple simulation domains does not yet exist.  The goal of this research is to 

develop a story world where literally thousand of stories are possible.  To accomplish 

this, the top-down structure employed by previous systems has been abandoned in favor 

of a bottom-up design paradigm based on multi-agent system simulation techniques. 

While a review of the previous work revealed areas requiring attention, it also 

served to provide inspiration, both in terms of what has worked in the past, and in what 

has not.  The common theme of a central drama manager shared by virtually every 

project described, and the inherent problems with scalability, led to the exploration of a 

bottom-up, distributed control architecture for generating stories.  A second common 

thread running through a majority of the projects was the notion of a fantasy world, or a 

coherent space in which the story (or scene) takes place [Laurel, 1986], [Weyhrauch, 

1997], [Mateas, 1997] and [Hayes-Roth and Rousseau, 1997].  The concept of a story 

world evolved into an environment for a multi-agent system.  Finally, a study of related 

work, as well as additional readings in narrative theory and interactive narrative [Murray, 

1998], [Polti, 1977] revealed an obvious, but fundamental relationship between an actor, 

character, role and scene.  An actor takes on the personality of a character, while the 

actions available to the character are a function of, and bounded by, the scene and the role 

the character plays in the scene.  This actor, character, role, scene relationship, as it 

applies to the story engine, is described in Chapter VI. 

The remaining chapters present a scalable multi-agent system architecture that 

balances interactivity, with character autonomy and story world controls, to present the 

user with a personalized story. 
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III. MULTI-AGENT SYSTEMS 
 

A. INTRODUCTION 
This chapter presents a definition of multi-agent systems (MAS) that serves as a 

basis for defining the MAS architecture used by the story engine to generate interactive 

stories.   

MAS are composed of numerous interacting computing elements, known as 

agents.  Agents are computer systems with two important capabilities.  First, they are, at 

least to some extent, capable of autonomous action – of deciding for themselves what 

they need to do in order to satisfy their design objectives.  Second, they are capable of 

interacting with other agents – not simply by exchanging data, but by engaging in 

analogues of human social activity: cooperation, coordination, negotiation, and the like 

[Wooldridge, 2002].   

MAS operate from the bottom-up, using multiple adaptive agents “…(as) 

intelligent actors, interacting among themselves by using their defined attributes and 

methods, but (are) able to modify those constraints to meet the goals assigned them by 

the modeler…providing real insight into how best to encourage and take advantage of 

individual initiatives and adaptability “ [Weiss, 1999].  

MASs have no centralized control – the agent simulation is leaderless.  Each 

agent in the simulation independently pursues its own independent goals.  Some agents 

may cooperate, while others compete.  The result is a highly dynamic environment where 

software agents, with no human intervention, can explore an environment, interacting 

with other agents and object in the environment in pursuit of their goals.  The outcome is 

innovative solutions for achieving the goals [Hiles et al., 2001]. 

While there are many definitions of multi-agent systems with varying degrees of 

formality, Ferber’s definition of a MAS (given in the next section) is used as a basis 

throughout this dissertation [Ferber, 1999].  Additional general information on multi-

agent systems can be found in [Weiss, 1999], [Holland, 1995] and [Russell and Norvig, 

1995].  Descriptions of specific MAS architectures and simulations can be found in 

Swarm [Langton, 1997], ISAAC combat simulation [Ilachinski, 1997], and Echo 
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simulated world [Echo, 2000].  These examples primarily explore the use of MAS 

architectures to model emergent behavior.   

B. MULTI-AGENT SYSTEM DEFINITION 
Ferber describes a multi-agent system as “an electronic or computing model made 

up of artificial entities which communicate with each other and act in an environment.”  

More precisely, multi-agent systems can be defined as a set of interacting elements 

described by Equation 1. 

MAS = {E, O, A, R, Op, Laws} 
 

E – Environment 
O – Objects situated in the environment 

A – Agents, (A ⊆ O) 
R – Relations linking objects O 

Op – Operations 
Laws – Constraints governing the environment 

Equation 1. Multi-Agent System from [Ferber, 1999] 

1. Environment 
MAS simulations can be formulated in a situated or non-situated environment.  In 

a situated simulation, the environment may be a Euclidean n-space or a notional space 

appropriate to the given simulation.  Regardless, at any given time, the agents and objects 

have a “location” in the environment.  This may be an (x, y, z) coordinate in the case of a 

3-D environment, or it may be a more abstract “location” defined in terms of time and 

resources.  In a situated simulation, agents are capable of perceiving their environment, 

recognizing the objects and agents populating the environment, and transforming the state 

of the environment by interacting with the other agents and objects.   

In the case of non-situated MASs, the environment is populated with agents and 

objects that interact in accordance with defined relations through agent-to-agent and 

agent-to-object communications.  The objects are typically resources needed by the 

agents to achieve their goals.  The agents and objects need not have a “location.”  The 

MAS is defined by the behavior of the agents and the network of relations linking them 

together.  Ferber describes this type of MAS as a “purely communicating MAS.” 
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2. Objects 
Objects are described as passive entities situated in the environment that can be 

perceived, created, destroyed and modified by the agents.  Under Ferber’s definition, 

agents are a subset of the objects with no clear distinction between the two.  Objects can 

be thought of as non-agent entities in the environment.  They may be totally passive like 

a rock or a tree, or they may be active as is the case with a radio transmitter emitting 

signals into the environment.  The primary distinction between objects and agents is 

intent.  Objects may be able to act to modify the environment, but there is no autonomous 

intent behind the actions.      

3. Agents 
Ferber describes an agent as a physical or virtual entity that can act in an 

environment, communicate with other agents, is driven by internal goals and objectives, 

possesses resources, perceives its environment but only a partial view (or possibly none 

at all), has skills, may reproduce, and behaves in a manner that satisfies its objectives.  

His definition makes no distinction between cognitive and reactive agents, and is general 

enough to encompass both. 

Cognitive agents (or deliberative agents), from the distributed artificial 

intelligence (DAI) community, are traditionally based on first-order predicate logic, 

sophisticated reasoning, and rely on the internal manipulation of symbols.  These agents 

maintain a symbolic representation of the environment within which they operate, and 

focus on communication and cooperation between agents.  Most importantly, these 

agents have intentions – goals and plans to achieve goals [Hiles et al., 2001]. 

Reactive agents, from the field of artificial life (A-Life), are reflexive – actions 

are “reactions” to stimulus regulated by perceptions and the agent’s internal state.  These 

agents maintain no planning, history, or symbolic representation of the world.  The 

simple reactive agents are combined into a society, where intelligence is seen as emergent 

from the vast interactions of the agents and the environment.  See [Weiss, 1999] for a 

more detailed comparison of cognitive and reactive agents.  

Throughout the remainder of this dissertation, both objects and agents are 

referenced extensively.  Often it is convenient to make statements that apply to both 
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objects and agents.  When both are being referred to together, the term entity will be 

used.  From a software engineering perspective, an object is an entity and an agent is an 

entity. 

4. Relations 
Relations are abstract links that create a dependency between the agents.  They 

can be as simple as allowing communications between two agents or they can be 

complicated relationships establishing the rules of cooperation and competition among a 

society of agents.  For example, two agents can form a cooperative relationship to pool 

resources that will allow a common goal to be achieved that would not be possible by any 

one agent acting alone.  In the case of a simulation involving a military command 

structure, the chain of command is a complicated relationship that imparts certain 

responsibilities on the agents based on their position in the structure.  An agent filling a 

“command” role will inherit certain goals that go along with the command position.  In 

addition, the command relation carries with it a certain amount of influence over the 

agents in subordinate positions; the goals of the “commander” agent influence the goals 

of the “subordinate” agents.  A detailed discussion of relations as they apply to multi-

agent systems can be found in [Roddy and Dickson, 2000]. 

5. Operations 
Agents are capable of autonomous actions or “operations” that allow them to 

perceive their environment, interact with each other and objects, and change their state, 

either internally (mood swings from happy to sad) or relative to the environment (move 

from location x to location y).   The set of actions available to an agent is dynamic.  It is 

constantly changing based on the current context, where current context is a function of 

the agent’s state and that of the environment.  That which is appropriate at time t, may 

not be appropriate at time t+1.  The change to the set of appropriate actions could be 

because the agent’s state changed, or it may be the result of a change in the environment. 

Given a MAS simulation with environment E, if Ωa is the comprehensive set of 

possible actions for agent a, then Equation 2 describes the reduced set of possible actions 

a can take at time t.  This set of actions, Ωa,t, is a function of agent a’s state at time t, 

ξ(at), and also the state of the environment that is within the given agent’s scope of 
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knowledge ξ(E′t).  E′t is the agent’s view or perception of the environment at time t.  

Included in ξ(E′t) is the state of all of the agents and objects in E′ as perceived by a.  As 

stated before, agents only have local perspective; they do not normally have complete 

knowledge of their environment so E′ ⊆ E. 

Ωa,t = f(ξ(at), ξ(E′t)); Ωa,t ⊆ Ωa 
 

Ωa,t = the set of valid actions for agent a at time t 
Ωa = set of all possible actions for agent a 

ξ(at ) = the state of agent a at time t 
ξ(E′t) = the state of environment E′ at time t 

  
E′ is agent a’s perceived environment (E′ ⊆ E) 

Equation 2. Action Set for Agent Type a at Time t 

While the set of all possible actions for an agent may be very large (Ωa), the 

contextually appropriate actions at any given time (Ωa,t) should be a much smaller set.  It 

is from this subset (Ωa,t ⊆ Ωa) that the agent decides what to do based on its active goals.   

6. Laws 
Given the operations described above, the rules for applying the operations, along 

with the reaction of the system to the operations, are captured in the laws of the system.  

These laws are the limitations and restrictions the agents and objects must adhere to while 

they reside in the environment.  They might include issues related to physically based 

modeling such as collision detection, gravity and light propagation, or they may govern 

the way relations are created and destroyed [Roddy and Dickson, 2000].   

C. SUMMARY 
This chapter presented a general framework for describing multi-agent systems 

based on Ferber’s definition.  MASs were described in terms of their environment, the 

entities populating the environment (agents and objects), the relationships established 

between the entities, and finally the actions agents can take (operations) and the rules by 

which the actions are applied (laws).  In the next chapter, the design philosophy 

underlying MAS research at the MOVES2 Institute is presented along with specific 

design concepts that are key to this research. 
                                                 

2 MOVES (Modeling of Virtual Environments and Simulation) Institute, Naval Postgraduate School, 
Monterey, CA. 
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IV. MULTI-AGENT SYSTEM RESEARCH 
 

A. INTRODUCTION 
For the past three years, the MOVES Institute’s Computer-Generated Autonomy 

Group has been exploring MAS architectures that facilitate the development and control 

of complex, adaptive behavior.  This chapter introduces four agent-based simulation 

design concepts, composite agents, goal management, tickets and connectors, for 

modeling multi-agent systems and implementing the models in software simulations 

[Hiles et al., 2001].  These concepts have evolved over the past three years into a novel 

simulation methodology called Connector-based Multi-Agent System (CMAS) 

simulation that is capable of generating dynamic plans and interactive stories.  The 

CMAS architecture, described in Chapter V, serves as the underlying model for the story 

engine.  

Portions of the following text have appeared previously in two collaborative 

papers: [Hiles et al., 2001] and [VanPutte et al., 2001].  

B. SEMI-FLUID SOFTWARE STRUCTURE 
Interactive stories, along with their underlying plots, are ever changing and fluid 

structures that only exist in the past.  That is, at any given instant in time, it is possible to 

precisely describe what has already occurred, but not will happen next.  In essence, 

stories are generated one step at a time based on the complex interactions of the 

characters with each other and their surroundings.  The structure of an interactive story is 

not fixed until after the story is told.   

Software development has traditionally focused on building software that is in 

direct conflict with the notion of fluid structures.  Software systems are typically 

engineered based on rigid designs where fixed and immutable relationships are 

established among the components inside the software.  It is assumed that the structure 

must be tightly bound at design time if a program has any chance of meeting its design 

goals.  This outlook can be described as analogous to a new highway system that is 

designed on paper and constructed with concrete and steel to meet the forecast needs of a 

growing city.  Once built, the highway system remains fixed and static unless new 
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construction occurs.  It would be absurd to expect it to mold itself into new forms to meet 

growing infrastructure and changing traffic patterns.   

This same thinking underlies much of the work in developing plans and producing 

interactive stories.  The architecture of the plot is fixed at design time; its structure is 

basically inert.  While varying degrees of deviation are possible based on the systems’ 

design, in general, the only stories that can be generated are those that the author or 

designer has thought of a priori.  The systems are not capable of producing stories that 

were not laid out in advance.   

With multi-agent systems, it is possible to build software that modifies its own 

structure, within a set of constraints, to maintain close contact with a dynamic 

environment.  In the case of interactive stories, this entails a MAS architecture that allows 

the story system to generate a fluid plot that is sensitive to the dynamic relationships 

between the characters, and the characters with their environment, while remaining true 

to the basic constraints (or laws) of the story world. 

1. Indirect Solutions - A Design Paradigm Shift 
Most software developers and programmers have been trained in traditional 

software engineering, relying on structured system designs that implement a direct 

solution to the problem.  Traditional problem solving in software engineering is direct in 

the sense that the developer conceives of an algorithmic solution and transfers that 

solution to software.  Software development rigor and practice is used to ensure the code 

will produce an exact execution of the algorithm.  In direct solutions, the programmer 

knows exactly how to solve the problem and the software implements that solution 

precisely.  This approach is fine for problems where the domain is well known, and the 

relationships are static, finite and well defined.  Direct solution systems are somewhat 

comparable to well-behaved functions; for a given input, the designer knows what to 

expect for the output.  Surprises are a clear indication of a bug in the system.   

In sharp contrast, surprises in MAS simulations are not only acceptable, but are 

the desired end, as long as the system operates within boundaries that are explicitly 

determined.  The software is intended to surprise the designer within a system of 

constraints.  This is possible through the use of software agents that discover an indirect 
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path to the solution, thereby allowing for the possibility of arriving at a solution the 

designer may not have previously considered.  In this way, multi-agent systems are 

capable of producing innovative solutions.  These solutions are indirect in that they were 

not explicitly programmed into the software; rather they are solutions that are consistent 

within the constraints the designer places on the software agents.  As a result, any 

solution that is valid within the imposed constraints, is no longer a bug, but a potential 

novel approach to the problem.  This is precisely the design philosophy that inspired the 

story engine.  A story world is defined and novel story lines (surprises) are generated as a 

result of agents pursuing their goals (indirect solutions). 

C. COMPOSITE AGENTS 
Multi-agent system simulations typically consist of numerous high-level agents 

that represent entities operating in a common, shared environment.  The agents residing 

in this “outer environment” interact with one another and the objects in the environment.  

They sense their environment, interpret the sensory input and decide what actions to take.  

These actions, in turn, affect the environment either directly through agent-to-

environment interactions or indirectly through agent-to-agent interaction.  In an effort to 

capture the strengths of both cognitive and reactive agents, while at the same time 

simplifying the design of such a complex agent, the Composite Agent (CA) architecture 

was developed.  

CAs are composed of a combination of agents (Figure 9).  They contain a set of 

Symbolic Constructor Agents (SCAs) that work with sensory streams (or impressions) 

from the outer environment to create a symbolic inner environment (Einner) representing 

the agent’s perspective of the outer environment (Eouter).  The basic structure of a 

Composite Agent follows Wooldridge’s “observe - update state - act” model for agents 

that maintain state [Wooldridge, 2002].  The SCAs define the agent’s sensor capabilities 

and are tailored to sense specific aspects of the environment.  They also act to control and 

filter impressions of the outer environment, so the agent isn’t overwhelmed in a rich outer 

environment.  Einner is influenced not only by what the SCAs sense, but also by the CA’s 

internal state.  For instance, in a predator-prey simulation, if the predator is hungry and 

senses an animal, it would show up in Einner as food.  On the other hand, if the predator 

has just eaten, then the animal would appear as just another animal in Einner. 
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Figure 9. Composite Agent 

The symbolic inner environment is the agent’s perception of the shared outer 

environment within which it operates.  Einner has little resemblance to the actual outer 

environment, rather it is an encoding of Eouter optimized to suit the CA’s specific 

function.  The role of an SCA is not unlike the role of radio navigation aid used by a 

pilot.  The navigation aid senses radio signals in the outer environment and converts them 

into directional information that the pilot can use to navigate the aircraft.  The inner 

environment used by the pilot for making decisions has little resemblance to the view 

looking out the window, but it is optimized for use by the pilot in navigating the aircraft.  

Combined with the SCAs is a set of Reactive Agents that operate on the symbolic 

inner environment and generate actions for the CA to perform.  Each Reactive Agent has 

a set of possible goals and an apparatus for managing the process of selecting the active 

goal or goals.   

D. REACTIVE AGENTS AND GOAL MANAGEMENT 

Composite Agents contain a set of Reactive Agents (RAs), where each reactive 

agent is responsible for promoting a specific behavior of the Composite Agent.  The set 

of RAs taken as a group, define the CA’s set of high-level behaviors.  The RAs operate 

within the world of the inner environment.  They take as input sensory information from 

Einner, and produce as output actions for the agent to perform.   
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Each RA has one or more goals specific to furthering its behavior or function.  So 

at any given time there are numerous goals competing for the CA’s attention.  Just as 

humans have multiple goals (sometimes conflicting), an agent too can have multiple 

goals it wishes to satisfy.  In human decision-making, goals are constantly shifting in 

priority, based on the person’s context and state.  Agents can mimic the flexibility and 

substitution skills of human decision-making with a variable goal management apparatus 

within the RAs.  Thus, contextually appropriate, intelligent behavior emerges from this 

goal apparatus.  RAs interpret the symbolic inner environment and through their goal 

apparatus, process this information to balance their goals and return an appropriate action 

for attaining their highest priority goal(s) (Figure 10).  

The basic definition of a goal has four components: a state, a measurement 

method, a weight, and a set of actions for achieving the goal (Equation 3).   

goal = < s, mm, w, {a}> 
 

s = state ∈ {inactive, active, achieved,…} 
mm = measurement method 

w = weight 
{a} =an action set for achieving the goal 

Equation 3. Goal Definition 
The goal’s state is an indication of whether the goal is active, inactive, achieved, 

or in some other domain specific status.  The measurement method translates the sensory 

input received by the RA into a quantifiable measure of the current strength of the goal 

and how well it is being satisfied.  This permits an agent to prioritize goals and adjust 

goal states based on context.  A goal may also have a weight attached that can be used to 

adjust the importance or priority of the goal based on experience.  Tied to each goal is an 

action or set of actions for achieving the goal under varying circumstances.  The end 

result is that within the RA goal apparatus there are multiple goals that are constantly 

changing – moving up and down – with the top (active) goals dominating the agent’s 

behavior.   
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Figure 10. Reactive Agent 
Additionally, agents can discard behaviors that do not further their goals, and 

increase the use of behaviors that have proved successful in reaching goals.  This simple 

process serves as a reactive learning system where the agent learns from the environment, 

based on “what works,” with no human expertise or intervention. 

Goal switching based on a dynamically changing environment produces 

innovative and adaptive behavior.  The ability to continually adapt to an ever-changing 

environment in real time is provided through a construct called connectors. 

E. CONNECTORS 
This section presents a formal definition of a connector and describes its 

fundamental behaviors.  [VanPutte, 2002] extended the definition of a connector to 

develop iconnectors that are used as an inter-entity communications mechanism in the 
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information assurance domain.  In the course of his work, VanPutte presents a Unified 

Modeling Language (UML) representation of iconnectors and their function.  In addition, 

he describes a graphical notation for visualizing iconnectors that is used here to visualize 

connectors. 

1. The Biological Inspiration Behind Connectors 
Multi-agent simulations are used to model inherently complex systems.  One of 

the major challenges is developing a communication protocol capable of standing up to 

the potentially combinatorial explosion in sensory information that floods the 

environment as the agents interact with each other and their surroundings.  The protocol 

must be flexible enough to allow agents to define what information they need and when 

they need it.  This is particularly difficult in agent-based modeling where the entities are 

autonomous and capable of changing their scope of interest to suit their current goals. 

The complexity described above and associated communication requirements are 

not unlike that found in molecular biology when studying cell-to-cell communication, 

coordination and control.  The following excerpt was taken from a molecular biology text 

and captures the fundamental role signaling plays in cellular biology.  

…the behavior of each individual cell in multicellular plants and animals 
must be carefully regulated to meet the needs of the organism as a whole.  
This is accomplished by a variety of signaling molecules that are secreted 
or expressed on the surface of one cell and bind to receptors expressed by 
other cells, thereby integrating and coordinating the functions of the many 
individual cells that make up organisms as complex as human beings.  
[Cooper, 1997] 

The signaling mechanisms found in molecular biology are the foundation of a 

remarkable intracellular and intercellular coordination and control system that manifests 

itself in the form of a functioning human body.  This system serves as the inspiration 

behind a software agent communication mechanism called connectors.  The remainder of 

this section presents an overly simplified, and primarily pictorial introduction into the 

signaling mechanisms used for cellular communication.   

All cells receive and respond to signals from their surroundings.  They respond to 

signaling molecules secreted by other cells, allowing cell-to-cell communication.  Some 

of the molecules carry signals over long distances, while others act locally to convey 
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information between neighboring cells.  There are four major types of signaling.  

Signaling over long distances occurs through Endocrine signaling, where molecules are 

secreted by cells and carried through the circulatory system to target cells a great distance 

away (Figure 11A). In Paracrine signaling, the released molecules act on neighboring 

target cells (Figure 11B).  Contact-dependent or direct cell-to-cell signaling occurs when 

the signaling molecule remains attached to the signaling cell (Figure 11C).  Finally, 

Autocrine signaling takes place when a cell produces a signaling molecule to which it 

also responds (Figure 11D).   

 

Figure 11. Cell Signaling Methods from [Cooper, 1997] 
 Cells in multicellular organisms are typically exposed to hundreds of different 

signals in an environment that can act in millions of combinations.  The cell must respond 

to this plethora of signals selectively, according to its own specific character (Figure 12).   
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Figure 12. Cells Responding to Combinations of Extracellular Signals from 
[Alberts et al., 2002] 

A cell may be programmed to respond to one combination of signals by 

differentiating, to another combination by multiplying, and yet another by performing 

some specialized function.  The hundreds of signal molecules that animals make can be 

used to create an almost unlimited number of signaling combinations.  The use of these 

combinations to control cell behavior enables an animal to control its cells in highly 

specific ways by using a limited diversity of signal molecules [Alberts et al., 2002].  In 

other words, from a limited set of signals, it is possible to control extremely sophisticated 

and specialized behavior.   

One way this is accomplished is through signal cascading.  Figure 13 shows how 

an extracellular signal molecule can trigger a cascade of intracellular signals.  The 

extracellular signal molecule at the top of the diagram binds with a receptor protein 

extended from the cell membrane.  This single external interaction begins a signal-

response process that results in gene transcription occurring within the nucleus of the cell.  
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Figure 13. Intracellular Signal Cascading from [Alberts et al., 2002] 

This section provided a brief description of cellular signaling to demonstrate how 

a system of signals and receptors can be used to control complex behavior.  The next 

section describes a software construct called a connector that is used to mimic certain 
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aspects of cellular signaling.  Connectors are not intended to duplicate exactly each of the 

cell signaling methods; rather they are an abstraction that captures the general nature of 

the distributed communication and coordination protocol. 

2. Connector Definition 
Connectors are a software component that can be “bolted on” to agents and 

objects in a multi-agent simulation to provide a communication and coordination 

capability.  The base set of connector behaviors can be augmented for the specific 

simulation to provide a powerful and flexible domain specific communications protocol.  

Through a process called connecting, agent-to-agent and agent-to-object connections are 

established during which two-way communication occurs between the connected entities.  

Connectors are active objects that sense and react to the environment.  They activate 

(extend) and deactivate (retract) in response to changes in the state of the entity to which 

they are attached.  As the entity’s state and the state of the environment changes, the 

connectors sense the changes and extend or retract accordingly. 

Equation 4 defines a connector in terms of seven components.  Connectors are 

attached to a host entity and have an associated control function that defines its behavior.  

Connectors, at a minimum, implement four basic actions: extend, retract, connect and 

disconnect.  These actions are used to modulate the connector between its three primary 

states of extended, retracted and connected.  Connectors are defined by type and can 

extend in one of two modes: receptor and stimulus.  Associated with each connector type, 

is a set of possible values the connector can assume.  As a receptor, the connector is 

capable of connecting with a connector of a matching type that is extended in stimulus 

mode.  That is, the connector is capable of attaching to a signal (molecule) released by an 

agent or object in the system.  In addition to the basic actions, connectors may be 

augmented with type-specific actions.  
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Connector c = <h, fc, s, m, t, V, v, A> 
 

h – host 
 fc – control function 

s – state; s ∈ {extended, retracted, connected} 
m – mode; m ∈ {receptor, stimulus} 

t - type 
V – set of possible values for connector type t 

v –current  value (v∈ V) 
A – action set; 

A = {extend, retract, connect, disconnect, type-specific actions} 

Equation 4. Connector Definition 

a. Graphical Notation 
Before proceeding further, it is necessary to briefly describe the graphical 

notation developed in [VanPutte, 2002] for visualizing connectors.  The notation was 

developed to depict a specific type of connector (iconnector) and has been modified 

somewhat to present a general definition of connectors.  Figure 14 depicts three 

connectors in various states; retracted, extended (stimulus) and extended (receptor).  The 

solid lines extending to the left into environment E indicate the source of the input to the 

respective control functions.  All three connectors are receiving input from various parts 

of environment E.  The symbol to the right side just below the connector arm indicates 

the connector type.  Connector W is of type γ and connectors X and Y are type β.  

Connector W is shown in a retracted state, while X and Y are extended.  When extended, 

connectors operate in one of two modes, stimulus or receptor as indicated by the different 

ends on connectors X and Y.  The symbol in the circular end of connector X indicates the 

value of the connector.  The receptor on connector Y is labeled with the set of values it 

can connect with (a and c); in the case where it can connect with any value, it is labeled 

with an ‘*’.   
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Figure 14. Graphical Depiction of Connectors 

b. Host Entity 
Connectors are attached to objects and agents in the simulation.  The 

object or agent to which they are attached is called the host entity.  As such, connectors 

become an extension of the host and function to describe the host’s state.  The host entity 

and connector control function are tied closely together in that the host entity serves to 

define the scope of information available to the connector’s control function.  That is, the 

control function operates primarily on input from the host.  However, when the connector 

is extended, information received via the connector is also available.  Figure 15 shows a 

connector attached to a host agent.  The control function is receiving input from the 

agent’s inner environment.  With the connector extended into the outer environment in 

receptor mode, any stimuli received by the connector are also fed to the control function.  

Connectors are also associated with an agent modeling construct called tickets, which is 

described later in this chapter.  
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Figure 15. Connector Attached to a Host Agent 

c. Control Function 
The control function (fc) manages the connector’s state changes, as well as 

value changes, and controls execution of domain-specific actions.  The term behavior is 

used in the context of connectors to describe “the execution of state changes, value 

changes and domain-specific actions relative to the state of the host to which it is 

attached.”  

The control function defines the behavior of the connector in terms of 

domain-specific measures and values.  For instance in the case of state changes, fc defines 

precisely, based on the information available to the connector, when the connector 

changes state.  Figure 16 shows two agents from a predator/prey simulation where both 

agents are equipped with food connectors. 
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Figure 16. Predator/Prey Control Function 
The predator’s inner environment includes a state variable that captures its 

hunger level.  The control function of the food connector is linked to this hunger state 

variable.  As the hunger level increases above a threshold of h1, the connector extends in 

receptor mode in an attempt to locate food.  If the predator senses the presence of food 

via a food stimulus, then a connection is established.  Because of the connection, the 

predator is able to satisfy its hunger.  The connection is broken once the prey’s food 

source is exhausted (connector retracts), or the predator’s hunger level is reduced below a 

threshold of h0.   
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d. State 
A connector has three possible states: extended, retracted and connected.  

In addition, an extended connector has two modes, receptor and stimulus.  The control 

function manages the state transitions as depicted in Figure 17. 
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(Receptor)

Retracted Connected
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(Stimulus)
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Retracted ConnectedRetracted Connected

 

Figure 17. Connector State Transition Diagram 
(1) Retracted.  In a retracted mode, the connector is inactive with 

respect the environment outside of its host entity.  The control function continues to 

receive updated information from within the host, and uses this to change the connector’s 

state.  From a retracted state, the connector is able to transition to an extended state, 

either in stimulus or receptor mode. 

(2) Extended.  When a connector extends, it does so in one of two 

modes: receptor or stimulus.  A full description of the two modes is provided below.  

When in an extended state, the connector has access to the environment outside of its 

host.  In the stimulus mode, the connector is broadcasting its value to all connectors 

extended in receptor mode capable of sensing the stimulus.  In receptor mode, the 

connector senses the environment for stimulus from connectors of a compatible type.  

From an extended state, a connector can transition to a retracted state, or alternatively, to 

a connected state.   

(3) Connected.  Connectors extended in receptor mode are capable 

of establishing a connection via a connect action.  A connection opens a conduit between 

the connected entities through which high-level interactions are possible.  Examples 

include pushing and pulling data, increasing or decreasing an agent’s resource levels or 
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adding procedural knowledge to an agent to simulate an increased level of training.  In 

[VanPutte, 2002] once an agent establishes a connection with piece of infrastructure, the 

agent can “pull” information (i.e. access codes and passwords), push information (i.e., a 

virus), or directly modify the entity (wipe the hard-drive).  As can be seen, the action set 

is specific to the connected entities.  The type and scope of action is application 

dependent. 

Connectors in a connected state can break the connection with a 

retract action and transition to a retracted state, or execute a disconnect action and return 

to an extended state in receptor or stimulus mode.   

e. Mode 
When connectors extend, they do so in one of two modes: stimulus or 

receptor.  In stimulus mode the connector takes on a single value from its set of possible 

values and broadcasts its type, value and host entity to the environment.  From the 

stimulus perspective, the information is sent with no specific intended target. 

Connectors extended in receptor mode are essentially in a listening mode.  

They listen for, or sense, connectors in their environment of the same type that are 

broadcasting in stimulus mode.  Incoming sensory information, in the form of value and 

host entity, is passed to the control function for processing.   

While in receptor mode, it is possible for the connector to enter into a 

connected state with another connector.  The receptor is labeled with a set of values from 

the connector’s value set that the receptor is capable of connecting with.  This set is 

dynamic in that the connector’s control function continually updates the members.  Once 

connected, additional high–level interactions are possible between the connected entities.  

These “high-level” interactions are defined by the host entities.  The connectors simply 

open up the communications channel between the hosts. 

Equation 5 defines a current value function (Φ) that returns the set of 

values the receptor can connect with, or the value of the stimulus. 
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    Given, 
c = <h, fc, s, m, t, V, v, A> 

 
  Vc ⊆ V ((s = extended) & (m = receptor)) 
 Φ(c) =   v ∈ V  ((s = extended) & (m = stimulus)) 
  undefined  otherwise 

 
  (Vc  =  the set of values labeling receptor c) 

Equation 5. Connector Current Value Function (Φ) 

f. Type 
Connectors are defined in terms of their type.  Only connectors of the 

same type can connect with one another.  The type designations for connectors are 

application dependant; there are no predefined types.  In the story engine instance 

described in Chapter VII, character agents are defined with seven personality traits and 

six resource categories, with a corresponding connector type for each.  This finite number 

of traits is based on the particular application – Army careers/values – and is not a 

limitation of the story engine.  Defining the connectors based on personality and 

resources establishes a character-to-character communications protocol structured in 

terms that are important to Army career progression stories. 

g. Value 
For each connector type, there is a defined range of possible values.  

When a connector is extended in stimulus mode, the connector’s current value is 

broadcast along with the type and host entity.  Much like type, values are application 

dependent with no predefined values for connectors.  In the story engine characters 

described above, one of the resource categories is Energy.  For the Energy type 

connector, there is a set of five possible discrete values ranging from Low to High (Figure 

18).  In the example, the connector value is from a discrete set but there is nothing to 

prevent the connector value from being the output of a continuous function. 
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Figure 18. Character Agent Energy Connector 

h. Action set 
The action set defines the actions that the connector’s control function can 

initiate.  There are four basic actions required of a connector: extend, retract, connect and 

disconnect.  In addition to the four basic actions, connectors may be extended with type-

specific actions appropriate for the given simulation domain.  The basic actions are used 

to transition the connector between its states (Figure 17).   

Extend and retract expose and rescind the connector arm as previously 

described.  If the connector is in a connected state, then retract breaks the connection.  

Disconnect breaks the connection between two connectors, but leaves the connector 

extended.  Connect initiates a connection between two connectors provided all of the 

prerequisites have been met.  Equation 6 defines the predicate conn(c1, c2), which 

describes the requirements for two connectors to connect.   
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Given,  
c1 = <h1, fc1, s1, m1, t1, V1, v1, A1> 

and 
c2 = <h2, fc2, s2, m2, t2, V2, v2, A2>  

then c1 can connect to c2 (conn(c1, c2)) 
 iff:  

s1 = s2 = extended 
m1 = receptor & m2 = stimulus 

v2 ∈ Φ(c1) 
t1 = t2 

Equation 6. Requirement for Two Connectors to Connect – conn(c1, c2) 
At a minimum, for a connection to be established, the receptor and 

stimulus connectors must be of compatible types and the stimulus value must match the 

label on the receptor.  Once these minimums are met, the control function may execute a 

connect action binding the two entities together.  It is important to note that the 

connection is not necessarily automatic.  Even though a connection is possible, fc must 

still initiate the connect action.  As an example, in the case of iconnectors from 

[VanPutte, 2002], fc is directed to initiate the connection by a higher level mechanism 

called an ibinder.  In the story engine CMAS described in Chapter VI, connections are 

initiated locally by the agents.  

F. TICKETS 
One of the major benefits of agent-based modeling is the innovative and adaptive 

behavior agents bring to simulations, however, it is often desirable to balance this with 

doctrinally correct and appropriate actions.  Symbolic Constructor Agents and the goal 

apparatus were developed to control the agent’s sensory capability and decision-making.  

In order to provide agents with a rich procedural knowledge base while still supporting 

adaptive behavior, a data structure called tickets has been developed.  Tickets allow 

agents to apply procedural knowledge in context.  They define the agent’s action set, i.e., 

its means to achieve its goals.  They are used to organize procedural knowledge and 

provide the ability to balance doctrinal behavior with adaptive, innovative action, 

resulting in enriched problem solving behavior.   
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Tied to each of an agent’s goals are one or more tickets that define how to achieve 

the goals (Equation 7).  Tickets are defined by a control function (fc), a set of connectors 

(C), and a set of frames (F).   

Ticket = < fc, C,  F> 
fc - control function 
C – connector set 

F - {frame1, frame2, …framen}; 

framei ∈ {action, ticket, reference} 

Equation 7. Ticket Definition 

1. Ticket Control Function 
The control function has four jobs.  When the ticket is first executed, it performs 

any necessary initialization.  Second, fc controls the sequence and manner of frame 

execution.  Since fc is user defined, any execution sequence is possible, including 

sequential, random, looping, etc.  In addition, the tickets can be defined so they execute 

through their entirety as a single action (execute all frames without interruption), or they 

can execute a single frame each time it is the agent’s turn to act (single step).  Third, 

when the ticket is complete, fc resets the ticket as appropriate.  Finally, it coordinates with 

the attached connectors to initiate their connect actions. 

2. Ticket Frames 
Tickets are comprised of a set of frames, F.  A frame can be thought of as a 

container that holds a procedural step.  However, simply encoding step-by-step 

procedural knowledge and linking it to various goals is not sufficient for creating 

intelligent behavior.  The desire is to apply the most appropriate actions or procedures for 

the “given situation.”  In a dynamic system, the “given situation” not only changes 

constantly, but is often so complex the system designer cannot conceive of, much less 

account for, every possibility.  Therefore, the mechanism for determining the “most 

appropriate” procedures must be flexible and able to support the same level of 

complexity as the changing contexts of the dynamic system.  By combining connectors 

with tickets, the desired flexibility can be achieved.  Figure 19 is a graphical depiction of 

a connector-based ticket. 

Ticket frames can be static or dynamic [Hiles et al., 2001], [VanPutte, 2002].  

Static frames hold a “by-name” call for a specific ticket or action, while dynamic frames 
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hold a more general “reference” for the type of ticket or action.  By-name specification of 

tickets and actions equates to hard-coding behaviors at design time.  In many cases, 

constraining an agent’s action in this way is desirable.  In Figure 19, frames one and three 

contain by-name calls to Action X and Ticket A respectively. 

Ticket frames can also hold ticket and action references.  These references allow 

the designer to specify the general nature of the behavior, but delay the final binding of 

the specific action or ticket until run time.   

References are simple lightweight objects that coordinate the actions of 

connectors extended in receptor mode.  When it comes time for a dynamic frame to 

execute, the reference object initiates a connection with an appropriate ticket or action.  

This run-time binding ensures the behavior will be appropriate for the given situation as 

perceived by the agent.  A detailed description of references is provided with the 

discussion of Composite Agent actions in Chapter V. 

Returning to Figure 19, frame two contains a reference for an action described by 

a type α connector with value r and a type β connector with value s.  These extended 

connectors (type α and β), as well as their respective values (r and s), were not fixed at 

design time, rather they result from the current state of the host agent.  They are not 

bound until the reference is evaluated for execution at run-time.  In this example, Action 

Y meets the criteria and will be executed in frame two.  Similarly, frame four contains a 

reference for a ticket with a type α connector with any value (*).  Ticket B will be 

executed at frame four. 



 
 
 
 

 

69 

...........

..........

Connectors

Action X

α β

q

r

s

Action Z
c

b

a

Action Y

Ticket A

Ticket A

Ticket C

a

c

pTicket B

Ticket N
c

r

d

s

t

Action X

α

Frames

Action N

1 2 3 4

Dynamic
Binding

*

p

sr

Dynamic
Binding

 

Figure 19. Example Connector-based Ticket 

3. Ticket Connectors 
Tickets have prerequisites that must be met in order to activate.  The prerequisites 

are defined in terms of connectors and are specific to each ticket.  Figure 20 shows a view 

of a composite agent with the connectors’ control functions receiving input from the 

agent’s inner environment.  Perceptions from the outer environment are processed by the 

SCAs which in turn update Einner.  Connectors attached to the tickets are likewise 

updating based on the agent’s inner environment and dynamically change state as Einner 

changes.  In Figure 20, Action X has the necessary connectors extended in stimulus mode 

that will allow it to connect with the reference in frame one of Ticket A.  
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Figure 20. Ticket and Action State Dynamically Maintained with Connectors 
With the connectors continually reacting to the environment, behavioral and 

procedural knowledge (tickets and actions) can bind at run-time to fit the context as it 

develops.  This binding is based not only on the state of the environment, but also on the 

goals of the agent, its capabilities, and its social interactions with other agents.  In this 

way, the correct procedural knowledge can be brought to bear in the appropriate 

situation. 

G. SUMMARY 
In this chapter, the concept of semi-fluid software structure was introduced.  

Connectors and tickets were formally defined and the biological inspiration behind 

connectors was presented.  When connectors are combined with tickets and actions, 

reference actions can be used to bind actions to tickets at run-time.  This run-time binding 

provides agents with the ability to execute contextually appropriate actions in pursuit of 

their goals.  Connectors, tickets and composite agents form the foundation for a 

Connector-based MAS (CMAS) architecture.  The following chapter defines the CMAS 

architecture and develops a simulation model that makes extensive use of connectors and 
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the process of connecting, by which agents employ a simulation specific “best-fit” 

algorithm to bind to other agents.  
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V. CONNECTOR-BASED MULTI-AGENT SYSTEM 
ARCHITECTURE 

 

A. INTRODUCTION 
This chapter introduces the Connector-based Multi-Agent System (CMAS) 

architecture.  A formal definition of a CMAS is presented, along with an architecture for 

a connector-based composite agent.  The CMAS architecture and connector-based agents 

form the foundation for the story engine. 

B. CONNECTOR-BASED MULTI-AGENT SYSTEM 
One of the difficulties in modeling complex systems is defining the function 

described in Equation 2 that reduces the set of all possible actions that an agent can take 

(Ωa) to a set of actions that are appropriate for the current situation (Ωa,t).  The function is 

far too complex for a top-down design.  The decision of what to do next, based on all of 

the possible things that can be done, must be pushed down to the local level where the 

agent decides.  In addition, once the decision is made to act, it is preferable to not simply 

take any action that will work, but act in a manner that is most appropriate to the given 

situation.  In order to take the appropriate action, binding the specific action should be 

delayed as long as possible. 

Connectors provide a general modeling construct used to facilitate 

communications and assist in the delayed binding of actions.  Their design makes them 

an excellent mechanism for representing the “current situation,” and when combined with 

tickets, they provide the ability to express “what should be done” with the flexibility of 

delaying the decision of “how it should be done.”   

In a connector-based MAS, the environment is populated with agents and objects 

that express their state through extended connectors.  The extended connectors provide a 

sensory stream for other agents in the simulation.  Through an operation of connecting, 

agents interact with one another and objects in the environment.  Connecting employs an 

application specific “best-fit” algorithm to bring entities together and facilitate their 

interaction.  These connections are active for a finite period of time during which the 

connected entities interact through the communication channels opened up by the bound 

connectors.   Through a continual process of connecting and disconnecting, the system 
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evolves (Figure 21).  In the case of the story engine, this process results in stories being 

generated one connection at a time. 
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Figure 21. Connector-based MAS 

Equation 8 defines a MAS architecture based on the fundamental behaviors of 

connectors and tickets.   

MAS = {E, O, A, R, Op, Laws, C} 
 

E – Environment  = <A, O, C> 
O – Objects situated in the environment 

A – Connector-based agents 
R – Relations linking agents and objects 

Op – Operations 
Laws – Laws governing the environment 

C – Connectors 

Equation 8. Connector-based Multi-Agent System (CMAS) Definition 

C. ENVIRONMENT 
As with a MAS defined by Equation 1, a CMAS may be situated or non-situated.  

The environment is populated with agents and objects, and associated with each of these 

entities are connectors that describe the entity’s current state.  In a CMAS, the agents do 

not directly perceive the other agents and objects in the environment; they sense the 

connectors that are exposed to the environment by the entities.  Therefore, while 
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Equation 9 includes agents and objects in the environment, they only exist through their 

connectors. 

E = <A, O, C> 
 

A – Agents 
O – Objects 

C – Connectors 
 

C  =  c(A) ∪ c(O) 
 where  c(x) is the connector set associated 

with entity x; x∈ A or x∈ O 

Equation 9. CMAS Environment 

D. OBJECTS 
Objects in a CMAS are non-agent entities in the environment.  They can be 

perceived, created, destroyed and modified by agents.  Unlike Ferber’s definition of a 

MAS, agents are not a subset of the objects.  The primary difference between agents and 

objects is that agents are active entities capable of taking action based on their own intent.   

Objects are differentiated by type, and within the type, further differentiated by 

specific instances of the type.  For example, rocks, trees and radio transmitters are object 

types.  For each of these types, there are instances with attributes specific to the instance.  

In the case of radio transmitters, broadcast frequencies might be used to differentiate 

transmitter instances. 

CMAS objects depicted in Figure 22 and defined by Equation 10 consist of 

connectors representing their state, and a control function that allow the objects to change 

state based on interactions with agents in the environment.  In the case of objects, the 

control function fc is basically a state machine; on input x, the object reacts in a 

predictable way, resulting in new state y. 
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Figure 22. CMAS Object 

o = <fc, C> 
 

fc –function controlling the object’s state 
C – set of connectors defining the state of object o 

Equation 10. CMAS Object Definition 
In general, the set O is defined as the union of all of the possible object types for 

the system (Equation 11).   

If there are n unique object types in the system, and  
oi = instances of object  type i 

then 
O U

i
io= ; i =1,..,n. 

Equation 11. CMAS Object Set (O) 
Since objects can be created and destroyed during the life of the system, to be able 

to evaluate the state of the objects as a whole, O must be defined relative to the specific 

object instances at time t (Equation 12).  

 If there are n unique object types in the system, and  
Oi,t = {instances of object type i in the system at time t} 

then 
Ot U

i
tiO ,= ; i = 1,..,n 

Equation 12. CMAS Objects at Time t (Ot) 
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E. CONNECTOR-BASED COMPOSITE AGENTS 
Connector-based agents are agents that adhere to the use of connectors as a 

primary communications mechanism and means of expressing their state to other agents 

in the environment.  Many classes of intelligent agents can be employed in a CMAS; the 

only defining factor being that they interface with the outer environment through 

connectors.  They do not have to employ connectors as their sole interface, but in as 

much as the agent wants its state to be known by other entities in the simulation, it does 

so through connectors.  This section describes connector-based agents in terms of the 

composite agent architecture described in Chapter IV.   

The previous chapter defined connectors and described their behavior.  This 

section describes how to put connectors to work to create a flexible communicating 

agent.  Equation 13 defines a connector-based composite agent. 

Agent a = <ASC, T, Ω, Einner, Ci, Ce, G, AR> 
 

ASC – set of symbolic constructor agents 
T – tickets 

Ω – agent’s action set 
Einner – agent’s inner environment 

Ci – local set of connectors internal to agent a 
Ce – connectors used to externally portray agent a’s state 

G – set of goals for agent a 
AR – set of reactive agents to manage agent a’s goal set 

Equation 13. Connector-based Composite Agent Definition 
Composite agents employ a sense-update-act model where they sense their 

environment, update their internal view of the world, then decide what action(s) to take.  

The agent’s sensory capabilities are defined in terms of its SCAs and extended 

connectors, which maintain an internal representation (Einner) of the agent’s view of the 

world.  From this Einner view, the agent employs a dynamic goal structure managed by 

reactive agents (RAs) to act in accordance with contextually appropriate procedural 

knowledge (tickets).  In the course of their sense-update-act cycle, the agents make 

extensive use of connectors to maintain the state of their inner environment (Ci), select 

and take action, and express their state to the outside world (Ce). Figure 23 depicts a 

single composite agent processing sensory input from the outer environment.  The 

following sections describe the connector-based composite agent in detail. 



 
 
 
 

 

78 

.....

...

Connectors

SCA

SCA

SCA

Connectors (Ci)

.....

Tickets Actions

RAj Gj

RAn Gn

Goals

Agent

(Ce)

Einner

 
Figure 23. Connector-based Composite Agent 

1. Symbolic Constructor Agents and Einner 
Symbolic constructor agents (SCAs) process sensory input from the outer 

environment (Eouter) and manipulate it as necessary to construct and maintain the agent’s 

inner environment (Einner).  SCAs receive their stimuli by any available means; this may 

include the use of connectors, but it is not required.  Depending on the particular domain 

being modeled, it might not be suitable for all external sensory information to be 

connector-based.   

The architecture of SCAs is domain dependent and closely integrated with the 

structure of the inner environment.  They can be simple reactive agents or complex 

cognitive agents using symbolic reasoning to interpret and correlate sensory streams to 
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build high-level representations of the input.  SCAs can take advantage of any desired 

means to process sensory input and construct an inner representation. 

As difficult as it is to define a precise architecture for SCAs, it is just as difficult 

to develop an exact definition of what comprises an inner environment.  In general, Einner 

can normally be described in terms of internal connectors, state variables and objects 

(Equation 14).   

Einner = <Ci, Sv, O> 
 

Ci – set of connectors internal to the agent 
Sv – set of domain specific state variables 

O - Objects    

Equation 14. Agent Inner Environment (Einner) 
The connector set Ci provides an intra-agent coordination and control capability.  

These connectors are identical to external connectors, with the exception that internal 

connectors never communicate directly with the outer environment.   

State variables provide a measure of agent characteristics that are best captured 

through a numeric value.  These values are updated through the SCAs and agent actions.  

Internal and external connectors often use these state variables as input to their control 

functions.   

The objects of Einner follow the definition from Equation 10.  Their presence and 

state is broadcast via their extended connectors.  Just as agents in the outer environment 

can connect to objects in their environment, SCAs and RAs can likewise connect to 

objects from Einner.  

2. Tickets and Actions 
Composite agents act on their inner and outer environments through actions 

selected by a dynamic goal structure.  Connector-based composite agents make use of 

connectors, in conjunction with a goal structure, to control and coordinate the application 

of both tickets and actions to achieve complex behavior.  Tickets, by their design, make 

extensive use of connectors (Equation 7).  Their function with respect to connector-based 

agents is the same as described in section IV.F.   

Run-time binding of tickets and actions is accomplished through a reference 

action.  References were introduced in section IV.F with the description of static and 
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dynamic ticket frames.  The following section formally defines a reference as an action 

specific to a connector-based agent and connector-based multi-agent simulation.  

a. References 
References are a special type of action that create a connection with a 

contextually appropriate ticket or action.  Using connectors extended in receptor mode to 

capture the current state (or context) of the agent, the reference connects with an action or 

ticket whose function is described by connectors extended in stimulus mode.  Equation 

15 defines a reference in terms of its control function and connector set.   

Reference r = <fr, Cr> 
 

fr – control function 
Cr – r’s set of connectors 

Equation 15. Reference Definition 
The function fr manages the extension and retraction of the connectors 

from Cr based on input from Einner.  In addition, for the extended connectors C′r ⊆ Cr, fr 

determines the set of values each of the connectors from C′r can connect with.  For 

instance, if c∈ C′r is a connector extended in receptor mode, then c is able to establish a 

connection with another connector whose value is a member of the set Φ(c).  Working in 

conjunction with connector c’s control function, fr adds or removes values from the set.  

In this way, the connectors extended by the reference are always attempting to connect 

with actions and tickets that are appropriate to the current state of Einner.  Equation 16 

defines the conditions under which a reference will connect with a ticket.  References 

connect to actions in a similar manner as described in the next section (Equation 18). 

Given, 
 

Reference r = <fr, Cr> 
Ticket tk = < ftk, Ctk, F> 

where, 
C′r ⊆ Cr is r’s set of extended connectors (receptor mode) 

C′tk ⊆ Ctk is tk’s set of extended connectors (stimulus mode) 
 

then r connects with tk iff: 
 

 (∀cr∈ C′r )∃ctk∈ C′tk (conn(cr, ctk))  
 (conn(cr, ctk) is defined by Equation 6) 

Equation 16. Reference Action to Ticket Connection 
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b. Actions 
Agents interact and modify their inner and outer environments by 

executing actions.  In a connector-based agent, actions are made up of three components 

(Equation 17); a control function (fa) used to coordinate the connectors, a set of 

connectors (Ca), and finally the underlying action that is executed when the action 

wrapper executes. 

Action a = <fa, Ca, act> 
 

fa – control function 
Ca – set of connectors (Ca ⊆ Ci ∪ Ce) 

act – underlying action 

Equation 17. Action Definition 
References, as defined above, are also capable of connecting with actions.  

Equation 18 defines the conditions for the connection. 

Given, 
 

Reference r = <fr, Cr> 
Action a = <fa, Ca, act> 

where, 
C′r ⊆ Cr is r’s set of extended connectors (receptor mode) 
C′a ⊆ Ca is a’s set of extended connectors (stimulus mode) 

 
then r connects with a iff: 

 
 (∀cr∈ C′r )∃ca∈ C′a (conn(cr, ca))  

 (conn(cr, ca) is defined by Equation 6) 

Equation 18. Reference Action to Action Connection 
Actions may require certain resources in order to execute.  The resource 

requirements are captured in the control function.  Through a connector’s connect action; 

an action can bind to an object to fill its resource needs.  Figure 24 shows an example 

where an EAT action connects to a FOOD object resulting in a connector extending on 

the action which allows it to connect to the reference. 
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Figure 24. Eat Action Binding to Food Object 

c. Signal Cascades 
Signal cascades, as described in section IV.E.1 are a sequence of actions 

and state changes that occur in a cell as the result of external stimuli.  When the internal 

components of a cell are aligned in just the right states, a single stimulus can trigger a 

complex sequence of internal actions (Figure 13).   

Through the combined use of connectors, references, tickets and actions, 

the power of signal cascading can be simulated in agents.  Figure 25 depicts a cascade 

that is initiated when agenti connects with agentj.  In this example, the external 

connection triggers an α signal being sent to reference W.  W in turn updates the label set 

on its extended receptor allowing it to connect with ticket P.  The first frame of P 

executes action A; the second executes reference X, resulting in execution of action E.  

The third frame executes reference Y that binds to ticket Q, resulting in the eventual 

execution of actions F and B. 

If the internal state of agentj had been different, it is possible that the 

connection would have triggered a different set of actions, or agentj may have failed to 

connect with agenti all together. 
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Figure 25. Signal Cascade 

3. Agent Connector Sets 
An agent’s connector sets (Ci and Ce) form the backbone of its intra-agent and 

inter-agent communication, coordination and control system.  Virtually every aspect of 

the agent is influenced in some way by connectors.  The set Ci is defined locally within 

the agent and is used strictly in an intra-agent role to meet the specific agent’s needs.  The 

scope of these connectors does not exist beyond the agent.   

Defining the origin of Ce is more difficult.  Depending of the developer’s point of 

view, Ce can be defined as a subset of the CMAS’s connector set C, (Ce ⊆ C).  This 

implies that C is a fixed set that was defined in a top-down fashion and all external 

connectors must come from this pre-defined set.  Alternatively, the CMAS connector set 

C can be defined as the union of the connector sets from all of the agents and objects in 
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the system.  In this case, C is defined in a bottom-up fashion and could conceivably 

change over time.  Considering the biological inspiration behind connectors, evolutionary 

theory would lead us to the conclusion that the connectors adapt and evolve locally to 

meet the needs of the host organism.  This is fine in theory, but when it comes to building 

connector-based software systems, allowing connectors to evolve has not yet been 

explored. 

In the connector-based architecture presented here, it is assumed that Ce is defined 

at the agent level, but connectors do not evolve, and the CMAS connector set C is the 

union of the connector sets defined by the objects and agents.  In this way, when new 

agents and objects are introduced to the system, it is possible to include their connectors 

in the CMAS set C (Equation 27 later in this chapter). 

4. Reactive Agents and Goals 
The behavior of an agent can be thought of as the manifestation of the actions the 

agent takes in pursuit of its goals.  As described in Chapter IV, the reactive agents (RA) 

of a Composite Agent function to control the agent’s behavior.  For any single behavior, 

there may be multiple goals responsible for producing the behavior.  In the Composite 

Agent architecture, RAs are defined with the intention that a single RA be responsible for 

a single behavior (Equation 19).   

aR = <fR, GR> 
 

fR – control function 
GR – goal set for aR ; 

Equation 19. Reactive Agent Definition 
With behaviors emerging from multiple goals, aR is basically a goal management 

apparatus where fR manages goal set GR.  GR is the goal set for a single RA; the 

Composite Agent’s goal set G is defined in Equation 20 as the union of the goal sets for 

each of the reactive agents.   
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Given agent a with reactive agent set AR, 
if Gk = goal set for reactive agent aR(k) ∈ AR 

 
then 

G U
k

kG= ; k = 1,..,|AR| 

Equation 20. Agent Goal Set (G) 
Equation 3 from Chapter IV defines goals as being comprised of a state, 

measurement method, weight and set of actions.  This definition is modified slightly for 

connector-based composite agents.  For connector-based agents, the “set of actions” is 

refined to the point where a goal can take one of three possible actions.  First, it can 

execute a “by-name” call to a specific action from the agent’s action set.  This obviously 

results in execution of the designated action.  Second, a “by-name” call can be made to a 

specific ticket.  In this case, the ticket is executed as described in Chapter IV, eventually 

resulting in a single action or series of actions being performed.  Finally, a reference can 

be executed which results in the run-time binding and execution of a contextually 

appropriate ticket or action.  References allow the active goal to select an action that not 

only helps achieve the goal, but is also appropriate for Composite Agent’s current state.  

In other words, it results in context sensitive action selection.  When it comes time for the 

agent to act, the reference from the active goal is evaluated resulting in a connection to 

one the Composite Agent’s tickets or actions (Figure 26). 
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Figure 26. Reactive Agent Goal Structure 
The architecture of a Composite Agent is intended to accommodate individual 

agents with a tremendous range of behaviors.  However, even with a single RA and small 

set of goals, a tremendously complex range of behavior is possible. 

F. OPERATIONS 
Ferber describes operations as actions that make it possible for the agents to 

perceive, produce, consume, transform and manipulate the objects and agents in the 

environment [Ferber, 1999].  There are three actions that are unique to connector-based 

multi-agent systems, and set CMASs apart from other agent-base architectures. The first 

is the fundamental connector level action of connect.  Equation 6 defined the conditions 

under which two connectors are able to connect.  The reference action (Equation 15) was 

constructed from connectors to provide agents with the capability to select and execute 

contextually appropriate tickets and actions.  The final action, called connecting or a 

connection action, allows agents to interact with other agents or objects.  All three of 

these CMAS unique actions, connect, reference and connecting, are assumed to be part of 

every agent’s action set.  From this description, the following definition for Operations is 

derived (Equation 21).   
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Given CMAS M with agent set A, 
M’s operations set Ω is defined as: 

 
Ω U

i
ia )(Ω=  i = 1,.., |A| 

ai ∈ A 
=Ω )( ia action set for agent ai 

Equation 21. CMAS Operations Set (Ω) 

1. Connecting 
Connecting is the process by which agents become bound to, and interact with, 

other agents and objects in the environment.  By connecting, agents establish a 

connection and are said to be connected.  During a connection, or while connected, 

agents interact and communicate with the bound entities.  Connections are established 

and maintained across a set of connectors.  The bound connectors provide the 

communication channels for the connected entities.  The entities engaged in the 

connection have the full range of communication and coordination actions provided by 

the bound connectors at their disposal.  Section IV.E.2 provides a detailed description of 

connector actions. 

Equation 22 describes the conditions under which two agents are able to connect.  

A connection can be established between agenti and agentj if there exists a subset of 

connectors from agenti’s set of extended connectors (receptor mode) (C′′e(i)) such that for 

every ce(i)∈ C′′e(i) there exists a matching connector on agentj extended in stimulus mode.  

Individual connectors match if they meet the criteria established by the predicate 

conn(ci, cj) (Equation 6).  Equation 23 is a similar equation that describes the conditions 

under which agents connect to objects.   

Given agents ai and aj with external connectors sets Ce(i) and Ce(j) respectively, 
 

if 
C′e(i) ⊆ Ce(i)  are extended in receptor mode 
C′e(j) ⊆ Ce(j) are extended in stimulus mode 

 
then ai is able to connect with aj (conn(ai, aj)) iff:  

 (∃C′′e(i) ⊆ C′e(i) )(∀ce(i)∈ C′′e(i) )∃ce(j)∈ C′e(j) (conn(c e(i), ce(j)))  
 (conn(ce(i), ce(j)) is defined by Equation 6) 

Equation 22. Agent-to-Agent Connection Conditions – conn(ai, aj) 
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Given agent ai with external connector set Ce(i) and object oj with connector set Cj,  
if, 

C′e(i) ⊆ Ce(i)  are extended in receptor mode 
C′j ⊆ Cj  are extended in stimulus mode 

 
then ai is able to connect with oj (conn(ai, oj)) iff:  

 (∃C′′e(i) ⊆ C′e(i) )(∀ce(i)∈ C′′e(i) )∃cj∈ C′j (conn(c e(i), cj))  
 (conn(ce(i), cj) is defined by Equation 6) 

Equation 23. Agent-to-Object Connection Conditions – conn(ai, oj) 
Equation 22 and Equation 23 establish the criteria under which it is possible to 

connect.  The actual decision to initiate a connection comes from one of two sources.  

Connections are initiated internally by an agent or externally by a higher-level control 

mechanism in the simulation.  In [VanPutte, 2002], an external mechanism called an 

ibinder is used to bring together agents and objects with matching iconnectors.  Agents 

and infrastructure objects register with the ibinder.  When resources or vulnerabilities are 

exposed via connectors by the infrastructure objects, the ibinder is notified.  Likewise, 

the ibinder is aware of the resource requirements of the agents.  The ibinder serves as a 

digital switchboard, connecting agents to resources.   

The story engine, which is described in the next chapter, strictly uses agent-

initiated connections to generate stories.  Agent-initiated binding is a self-serving process 

where agents look for connections that are advantageous to themselves and promote their 

current goals.  This does not mean the agents cannot or will not cooperate.  On the 

contrary, connections can be weighted so that mutually beneficial connections are more 

likely to occur.   

The agent has the following information available when evaluating the fitness of a 

connection: its internal state, its goals with their status and measure, and the type and 

value of the connectors it is evaluating for connection.  In addition, conn(ai, aj)3 being 

true guarantees that the connection is valid with respect to the laws of the story world.  

From the set of possible connections the agent can engage in, it must determine which 

one appears to be the most beneficial based on its goals and current state.   
                                                 

3 The conn predicate provides a means of formally describing the conditions under which a connection 
may occur.  It is not meant to imply that connector-based composite agents, or any connector-based agent 
must use formal logic methods to manage their connection process. 
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At any given time, an agent is aware of a set of entities (objects and agents) in its 

environment.  This set of entities W, is described as the agent’s awareness set (Equation 

24).   

Given  
CMAS M with agent set A, object set O, 

and  
agent a ∈ A,  

 
∃W ⊆ A∪ O, 

s.t. a is aware of the agents and objects of W. 
   

Agent a maintains W through its extended connectors and SCAs.   

Equation 24. Awareness Set (W) 

Given a with awareness set W, there is a set W′ ⊆ W that a is able to connect with 

(Equation 25).  W′ is known as the agent’s set of candidate connections.  Note that it is 

possible for W′ = ∅ in which case the agent cannot engage in a connection.   

Given agent a with awareness set W,  
a’s set of candidate connections is defined as: 

W′ U
We

eaconn
∈

= ),(  

Equation 25. Candidate Connection Set (W′) 
Equation 26 defines an evaluation function for comparing the respective value of 

each connection when multiple connections are possible. 

Given agent a with external connector set C, 
goal set G, and candidate connections W′.   

 
(∀e∈W′) ∃C′ ⊆ C for which conn(a, e) is true. 

C′ is the set of connector(s) over which a can connect to e. 
 

The most favorable connection (mfc) over the set W′ is  
 

mfc = 
i

max f(C′i, G, ξ(a)); i = 1,..,|W′| 
 

ξ(a) is an evaluation of agent a’s state. 
f is a domain specific evaluation of the value of connection i. 

Equation 26. Most Favorable Connection (mfc) 

G. RELATIONS 
In a previous chapter, relations were described as “abstract links” that create a 

dependency between the agents.  Connectors provide a natural means for establishing and 
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maintaining relationships between agents.  They can be used to establish private networks 

between agents.  The “related” agents can then communicate and coordinate over the 

private network.   

An agent’s set of extended connectors defines its scope of interest and influence.  

By their type and value attributes, they define the other agents and objects in the 

environment the host agent is interested in interacting with.  This scope of interest and 

influence is precisely what is at the heart of relationships.  The “abstract links” used to 

describe relations have a one-to-one correspondence with connector types.  When a group 

of agents shares a set of common connectors, they have the ability to interact as a 

coordinated group over a “private” communications network.  The level and type of 

coordination is determined by the “relationship-specific” actions the related agents 

possess.   

The definition of connectors allows for the basic action set of a connector to be 

augmented with “type-specific” actions.  When a set of relationship-specific connectors is 

defined, these type-specific actions are used to implement actions that are unique to the 

relationship.   

Figure 27 shows a CMAS environment populated with agents and resources.  

There are three types of resources (r, s, and t).  Each agent has a primary goal of 

collecting as many resources as possible, but only of a single type.  Connector type β is 

used to sense and bind to resource objects.  Agent D, for instance, can sense and collect 

resource r.  The agents have a limited perception range and randomly explore the 

environment in search of resources.  Agents A, B, and C have established a cooperative 

relationship whereby they share information and notify each other when they locate a 

resource of interest to one of the other agents.  The relationship is established through a 

type λ connector.  By entering into this relationship, the agents are able to sense all three 

resources, not just their primary resource.  When an agent detects a resource that is of 

interest to another agent in the relationship, it extends a type λ connector in stimulus 

mode.  The interested agent establishes a connection through which the resource type and 

location are passed.  This relationship greatly extends the related agents’ sensory range. 
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Figure 27. Resource Sharing Relationship 
While this example is relatively small, it serves to demonstrate the role connectors 

play in establishing and defining relationships in a CMAS simulation.  

H. LAWS 

The laws of the CMAS are both global and distributed.  They are intended to 

establish the boundaries for the simulation.  They do not define specific paths or 

behaviors; those are left for the agents to discover.  In an earlier chapter, the ideas of 

semi-fluid software structures and indirect solutions were discussed.  Agents are useful 

for finding solutions the designers may not have considered.  To do this, they must have 

the freedom to operate across a broad landscape.  However, if the solution is going to be 

useful, there must be constraints on the landscape.  These constraints are the laws of the 

simulation.  They must be chosen carefully so as not to overly constrain the agents, yet be 

specific enough so the solutions are viable.  This section does not attempt to define 

specific constraints for they are very much domain dependent; that is saved for the 

following chapters where the story engine and America’s Army: Soldiers are described.  

The remainder of this section identifies the components used to define and enforce 

constraints.   

In agent-based modeling, there is no single omniscient entity controlling the 

actions and interactions of the agents.  With no central control, the enforcement of laws is 
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pushed down to the agent level.  This is not to say that there are no global laws.  

Newton’s laws are a good example; they may apply to all agents and objects in a situated 

environment involving motion.  One set of equations can be used to describe the laws, 

but there is no centralized control mechanism that is responsible for ensuring each agent 

and object adheres to these laws.  They are enforced by their encoding in the actions of 

the agents, i.e., if an agent at point x moves with a velocity vector of v for t seconds, it 

will end up at point y. 

In the CMAS architecture, laws are also described and enforced through connect 

and connection actions, and in terms of tickets and references.  All of these work together 

to define and enforce the laws.   

Chapter VII describes an implementation of the story engine set in the domain of 

the U.S. Army.  The engine generates stories depicting a soldier’s progression through an 

Army career.  In this simulation, tickets and references are used to capture the procedural 

constraints, or laws, associated with Army career progression and school requirements to 

achieve specific designations.  The tickets ensure the soldier follows a legitimate Army 

career path.  For example, when soldiers enlist in the Army, there are specific training 

paths based on their specialty.  These include entry processing, basic training, advanced 

training and then a duty assignment.  This progression is captured in tickets that ensure a 

soldier completes basic training before advanced training.  It would not make sense for 

the soldier to jump directly to a duty assignment with no training.   

Within each training area, there are certain events every soldier must participate 

in as they progress.  These progressions are not optional; they are specific laws that apply 

to the Army.  Army basic training is made up of a well-defined sequence of training 

events that prepare a soldier for the next phase of training.  The events are not optional, 

they must be completed, and usually in a fixed sequence.  This sort of sequencing is 

captured in tickets.   

In conjunction with tickets, connectors and references are used to enforce 

prerequisite constraints.  Continuing with the Army career progression example, at some 

point a soldier must select their next duty assignment.  The action to select occurs when 

the soldier reaches the frame of their duty assignment ticket marking the end of the 
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assignment.  The reference in the ticket frame is populated with connectors that represent 

the soldier’s skill set, experience and performance.  The only schools and duty 

assignments the soldier can select are those for which a valid connection is possible.  If 

the soldier wants to join the Special Forces but does not possess the correct connector set, 

they will not be able to connect with the Special Forces ticket.   In this way, tickets, 

references and connectors work together to enforce the laws of the simulation.  The laws 

pertaining to qualifying for Special Forces are captured in the set of connectors extended 

(stimulus mode) from the Special Forces ticket.   

I. CONNECTOR SET 
The set of connectors comprising a CMAS can be separated into two categories.  

There are external connectors that are visible throughout the CMAS environment E.  

There is also a set of internal connectors that the agents use for intra-agent coordination 

and control.  Equation 27 defines the two sets as the union of the corresponding set from 

each of the system’s agents and objects.   

Given, 
 

CMAS M with agent set A and object set O, 
aj = <ASC(j), Tj, Ωj, Einner(j), Ci(j), Ce(j), Gj, AR(j)>; (aj ∈ A) 

and  
ok = <fc, Co(k)> (ok ∈ O) 

 
then, 

 
C = <Cint, Cext> 

 
where, 

 
Cint U

j
jiC )(= ; j= 1,..,|A| 

Cext 















= UUU

k
ko

j
je CC )()( ; j= 1,..,|A|, k = 1,..,|O| 

Equation 27. CMAS Connector Set (C) 

J. MANAGING THE COMPLEXITY OF AGENT INTERACTIONS 
Connectors serve to establish a context for the agents within their environment.  

Context is defined as “the interrelated conditions in which something exists.” [Merriam-

Webster, 2002].  The context influences the agent’s goals and actions.  For example, 

when a person is sitting in a meeting, their surroundings and the meeting itself establish a 
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context for the person that helps to determine what actions are appropriate and which are 

not.  It also influences the person’s goals.   

An agent’s context is established by its connectors.  Therefore, given the agent’s 

set of extended connectors, only certain tickets and actions are possible, either directly or 

through references.  As soon as the agent’s connectors change state, the context 

immediately changes and new actions and tickets are available.  Agents may have 

extensive connector sets that allow for huge number of states (or contexts).  The soldier 

characters in the America’s Army: Soldiers have seven core values each with five levels, 

six resources, each with five levels, five possible active goals with each goal being in one 

of five states, and they can be in any one of four career phases and any one of 10 types of 

places.  From this, a soldier agent’s context may be any of 1.6x1015 contexts.  However, 

the important notion is that at any time, the soldier only has a single context.  The agent’s 

context is captured by its extended connectors, which are managed locally by the agent.  

In managing connectors (context) locally, the agent self-regulates its interests and the 

factors that influence its actions.  Connectors are the common thread that tie the state of 

the agent’s outer environment together with the inner environment, the agent’s goals, and 

through references, the appropriate tickets and actions to achieve the goals.   

K. CONNECTOR-BASED SIMULATION MODEL 
The connection action is at the heart of CMAS simulation.  When a CMAS 

environment, including all of its agents and objects, is described in terms of connectors, 

the connecting process provides a means of managing the combinatorial explosion of 

possible states and contexts, to facilitate agent and object interaction.  In the course of the 

simulation, the agents act on two levels, the first being the “reactive” response based on 

connector input.  Stimuli received through connectors trigger signaling cascades within 

the agent.  The second is the action(s) the agent takes in pursuit of its goals.  This action 

is the product of the agent’s goal management process.  The CMAS simulation model 

brings these two together.    
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While (not done) { 
 Randomize agents 

For each agent { 
 Sense environment  

   SCAs and connectors sense environment  
   Update existing bound connections (push and pull) 

 Update Einner 
  Connect 
   Evaluate mfc function and initiate new connections 
  Update new connections 
   While (new connections exist) { 
    Update new connections (push and pull) 
    Update Einner  
    Evaluate mfc function and initiate new connections 
   } 
  Act 
 } 
} // end main loop 

Figure 28. CMAS Simulation Model 

L. SUMMARY 
This chapter presented a formal definition of the Connector-based Multi-Agent 

System (CMAS) and described a simulation model based on the CMAS architecture.  The 

story engine presented in the next chapter is constructed from the CMAS architecture. 
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VI. INTERACTIVE STORY GENERATION SYSTEM 
 

A. INTRODUCTION 
The Interactive Story Generation System (ISGS) is comprised of three primary 

components that work in concert to structure and present interactive stories (Figure 29).  

These components are the story engine, scene rendering subsystem (SRS), and graphical 

interface.  The ISGS follows the Model-View-Controller (MVC) architecture [Gamma et 

al., 1995].  MVC divides the system responsibilities into three parts: the model, which 

contains the program data; the view, which provides the visual presentation of the model, 

and the controller, which defines the system behavior.  The story engine CMAS and 

associated data represent the controller and model, while the SRS and graphical interface 

provide the view.  The graphical interface augments the controller by way of manual 

control in the form of user intervention and interaction with the stories.  Following the 

MVC abstraction, replacing the SRS with another view can be performed without need to 

modify the story engine.   
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Figure 29. Interactive Story Generation System 
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This dissertation focuses on the story engine and story engine CMAS.  First, this 

chapter relates story worlds and story lines to the CMAS architecture.  The components 

of the story engine CMAS that uniquely set it apart from other CMASs are then 

presented.  An inductive argument is presented as proof that the story engine generates 

story lines that are logically connected and goal-directed.  Further, it is argued, that the 

story lines are sound with respect to the domain being modeled.  Finally, the SRS and 

graphical interface are described as components of the integrated ISGS.  The ISGS brings 

together the story engine CMAS with generative text-to-voice, photo-cell animation, and 

photo-realistic settings (locations) to present interactive stories. 

B. STORY ONTOLOGY 
This section describes the narrative constructs of story world, story and story line 

as they apply to this work.  A one-to-one mapping is defined between these narrative 

structures and the corresponding CMAS constructs of the story engine.   

1. Story World, Story and Story Line 

A story world is comprised of characters and props, along with locations where 

events occur and characters interact with each other, the props, and their surroundings. 

The interactions are not random nor are the characters free to act as they wish without 

regard to the rest of the story world.  There are constraints on character actions and 

interactions.   Equation 28 defines a story world in terms of five components: characters, 

props, locations, actions and constraints. 

Story World = {Ch, P, L, A, Co} 
 

Ch – Characters 
P – Props 

L – Locations 
A – Actions 

Co - Constraints 

Equation 28. Story World Definition 
Consider the children’s story of The Three Little Pigs.  In the story world of the 

three pigs, the world consists of three pigs, a wolf, hay, sticks, bricks, plus additional 

props (flute, fiddle, shovels, etc.) (Figure 30).  The action takes place in multiple 

locations including a straw house, wood house and brick house.  There are constraints on 

what the characters can do, though in this case they are very much controlled by the 
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author as opposed to constrained by physics and nature.  Multiple story lines based on 

this story world are possible, but actually generating a story line requires that a set of 

initial conditions be set.  In this case, the initial conditions might include the personality 

traits for the pigs and wolf, along with their skill levels and initial goal(s).  Therefore, a 

traversal requires a story world plus a set of initial conditions.  This tuple of (story world, 

initial conditions) defines a story. 

Continuing with the three little pigs, if the initial conditions define two happy-go-

lucky pigs, one hard working pig and a hungry wolf, the result may be similar to the 

traditional story line of the three pigs.  On the other hand, by modifying the initial 

conditions and defining three devious pigs with a good-natured wolf, it may be possible 

to get a completely different story line from the same story world, i.e., The True Story of 

the 3 Little Pigs [Scieszka and Smith, 1989].  A story line is therefore the result of a 

traversal through a given story (story world plus initial conditions). 

Three Pigs and a Wolf Story World

“Traditional”
Three Pigs
Story Line

Story
World

Definition

Initial
Conditions

Three Pigs and a Wolf Story World

“Traditional”
Three Pigs
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Figure 30. Three Pigs and a Wolf Story World 
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The definition of the story world provides the “potential” for numerous and 

varying stories.  When the story world is transferred to software that “potential” can be 

realized in the form of dynamic story lines. 

2. Story World as a CMAS 
The story world correlates directly with the definition of a CMAS (Equation 8).  

The CMAS components of agents, objects, and environment equate to the story world’s 

characters, props and locations respectively.  The laws, operations and relations of the 

CMAS establish the constraints within which the characters interact.  The goals provide 

the impetus for the characters while the tickets and actions provide the means for the 

characters to achieve their goals.  When the CMAS is combined with a set of initial 

conditions, the result is a simulation.   

In this context, a simulation is a generating function that produces a story line.  

Let S be defined as a generating function that when applied to a CMAS produces a set of 

outputs, including a story line (Equation 29). 

Given 
 

CMAS M and initial conditions I, 
S is generating function that produces output as follows: 

 
S(M,I) = O; 

 
where 

O is a set of outputs and story line L∈ O. 

Equation 29. CMAS Generating Function (S) 
S takes initial conditions and a CMAS as input, and produces a set of outputs, 

including a story line, L. L is called a story line generated by S given initial conditions I. 

When S is left to run to completion without intervention, S is said to be non-interactive.  

If allowances are made for the user to intervene as the simulation progresses, as is the 

case with the story engine, then S is interactive.   

Repeated applications of S may generate identical or different sequences L each 

time S is applied with the same initial conditions. When repeated application of S 

generates identical story lines, S is called deterministic.  Alternatively, when S generates 

a different story line each time it is applied, the simulation is said to be non-deterministic.  
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When S is interactive, it is likewise non-deterministic as a consequence of the variability 

in user intervention. 

Unlike most stories produced by systems with statically defined plans, story 

engine CMAS models are purposely designed to produce novel or surprising story lines, 

i.e. non-deterministic story lines. There are two ways to do this: (1) by introducing 

pseudo-randomness in the agent’s plans through Monte Carlo methods, or (2) by 

permitting the agents to devise their own plans as the story line unfolds. This dissertation 

distinguishes between Monte Carlo techniques and dynamic plans, e.g. plans that are 

undefined initially, and unfold dynamically as the simulation runs.  

The story engine is not concerned with finding a single plan or story line; it is 

intended to generate “possible” story lines.  But rather than produce “possible” story lines 

through the application of Monte Carlo techniques, the story engine generates story lines 

by allowing agents to dynamically construct plans as they explore a story world, (as 

defined by the story engine CMAS data set) in pursuit of their goal(s).  The resulting 

story lines are plans that lead to the achievement of a goal, and while achievement is 

significant, the path to achievement is also of interest. 

This agent-based approach to generating story lines does not exclude Monte Carlo 

techniques from being used to generate multiple replications in order to study the CMAS 

model of the domain.  Examination of the frequency of possible story lines can give 

insight into the CMAS representation and also the likelihood of the answers occurring 

based on the agent’s representation of the domain being studied. 

The space of potential story lines is combinatorially large and therefore it is not 

possible to explore the entire space and visit every possible story line.  The best that can 

be done is to conduct a focused exploration.  In the previous chapter, it was shown how 

the focus of the agent is controlled via connectors.  In essence, the connectors tune the 

agent’s attention to precisely those parts of the environment (agents and objects) most 

relevant given the agent’s current state; and allow it to communicate and coordinate with 

precisely those agents that can assist it in achieving its goals.  This modeling approach 

focuses on the middle ground between finding a single answer and exploring all possible 

answers. 
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C. STORY ENGINE CMAS 

The story engine CMAS is a data-driven architecture.  The simulation domain is 

defined by the data, not the CMAS.  In the next chapter, a data set representative of U.S. 

Army career progression is described.  This data is used in America’s Army: Soldiers to 

generate stories centered on pursuing an army career.  By changing data, the story engine 

CMAS can be used to generate stories within a totally different domain. 

The story engine, as depicted in Figure 29, is a simulation kernel that implements 

the generating function S defined by Equation 29.  The story engine is designed to 

operate on a specific instance of a CMAS, called a story engine CMAS.  The story engine 

is a non-deterministic, interactive engine that explores a story world, as defined by a story 

engine CMAS and associated data set, to generate story lines.  The non-deterministic 

characteristic of the story engine results from user intervention and the possible use of 

pseudo-random numbers to make choices as the story line is generated.  The interactive 

nature of the engine does not impact the repeatability of the story lines.  If interaction by 

the user is considered part of the input, albeit occurring at varying points in the process, 

then interactively generated story lines are repeatable given identical initial conditions, 

random number seeds, and the same user interaction at the same times and places in the 

story line generation process. 

The story engine CMAS follows the general constructs of a CMAS as described 

in Chapter V.  The unique components are two connector-based composite agent types; 

character agents and scene agents.  The character and scene agents are capable of 

generating dynamic stories through a repetitive connection process.  These two agent 

types are combined with tickets, actions, references, connectors, laws and relations to 

define a story world.  Through the ISGS, the story world can be combined with imagery 

and sound to generate and visualize multiple story lines (Figure 31). 
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Figure 31. Interactive Story Generation System with Agents and Media 
The remainder of this section describes character agents, scene agents and the 

character-to-scene connection process.  The following vignette is repeatedly referenced 

as the story engine CMAS components are described.   

A young man wants to buy a car, and on a Saturday afternoon he heads to 
the local used car dealership.  The experienced used car dealer greets his 
customer and quickly sizes him up as a naïve buyer.  As they begin 
walking through the car lot, he assures the young man that he has the 
perfect car for him.    The scene closes with the young man driving away 
in the “perfect car” having just signed a high interest loan, while paying 
well over the car’s value. 

1. Character Agents 
The story engine CMAS structures stories around a central character agent.  This 

central character is designated the “main character” and is the protagonist of the story.  

The implication of this, from the CMAS perspective, is that connections with scene 

agents are always initiated by the main character.  In the ISGS, the player’s character is 
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the main character.  In this way, the story is structured around the player’s interventions 

and their character’s goals. 

Character agents are composite agents, and as such, they are able to take full 

advantage of the capabilities provided by the connector-based composite agent 

architecture.  The character agents described here closely reflect the agents developed for 

the initial version of the story engine CMAS constructed for the America’s Army: 

Soldiers project.  They do not necessarily implement all of the connector-based 

composite agent features.  For example, the character agents do not make use of 

Symbolic Constructor Agents; their external sensing occurs exclusively through extended 

connectors.  This is not a limitation on the agents; it is simply how the initial version of 

the story engine CMAS was implemented. 

a. Goals and Actions 

The agent’s inner environment consists of a set of state variables with 

associated external connectors.  The agents are equipped with a set of goals and a reactive 

agent to manage the goals.  The agent has a set of tickets it uses to achieve its goals.  As 

described in Sections IV.F and V.E.4, an agent’s goals resolve to specific actions through 

references and tickets (Figure 26).  In the story engine, character agents have a limited set 

of actions that are primarily used to initiate the agent’s next connection.  Just as actors 

don’t act until they are filling a role in a scene on stage (or in a movie), character agents 

can’t act until they are filling a role in a scene (connected with a scene agent).  Because 

the characters are autonomous agents, they need control over which scenes they 

participate in.  The character agent actions provide this control. An action’s precise 

function is to initiate a connection with a scene agent based on the connectors defined by 

the action.  The actions that literally change the character’s state, further its goals and 

propel it through the story are resident in the scene agents.   

Once a connection is established, the character fills a role in the scene and is then 

free to act within the bounds of the scene based on its current state (as expressed through 

its connectors) and goals.  For instance, if the character has a goal of buying a car, then it 

must connect with a scene that will put it in a position where it can purchase a car.  The 

kind of car purchased, and how good a deal the character negotiates is influenced by how 

badly the character wants a car (goal weight) and how savvy the character is as a buyer 
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(state variable).  The character knows what it wants to do (buy a car); connecting to a 

scene agent provides the how (car lot scene).  A detailed description of the character-to-

scene connection is provided in a following section. 

b. Most Favorable Connection 
When a character agent prepares to initiate a connection, there are 

potentially many scenes it can connect with, but it can only connect with one scene at a 

time.  That is, a character can only be in one place, doing one thing at a time.  The 

character agent initiates a connection with a scene agent based on the evaluation of its 

most favorable connection (mfc) function.   As described earlier, goals have a weight and 

a measurement method.  The measurement method provides a numeric measure of how 

well the goal is being satisfied (higher being more satisfied), while the weight is a 

measure of the importance of the goal.  These values are used by the mfc to identify the 

connection that is “best” in terms of the agent’s goals.   

Given agent a, with goal set G, Equation 25 defines a set W′ as the set of 

entities in the environment with which a is able to establish a connection.  With the story 

engine CMAS, character agents only connect with scene agents so W′ consists entirely of 

scene agents.  Equation 30 defines a character agent’s most favorable connection 

function.  The mfc is a measure of the goal’s weight (wt) times its level of satisfaction, 

where satisfaction level is 1.0 minus the goal’s measure (mm).  The logic being that the 

more satisfied the goal, the less attention it needs at the current time.  This is scaled by 

the goal’s importance. 

Given agent a with goal set G and 
possible connections W′ as defined by Equation 26, 

 
mfc = max (1.0 - mmi)(wti) 

 gi∈G 
 s.t. conn(gi, W′)  

mmi - gi’s measure; (0.0 ≤ mmi ≤ 1.0) 
wti - gi’s weight; (0.0 ≤wti ≤ 1.0) 

(∃e∈ W′)conn(ai, e)→ conn(gi, W′), 
where ai is the action bound to gi. 

Equation 30. Character Agent Most Favorable Connection Function 

Figure 32 shows a character agent’s goal structure.  Each of the goals is 

bound to an action via a reference – some directly, others through tickets.  The actions are 
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bound to the references across a set of connectors (Equation 18, Figure 26).  The bound 

connectors establish the set of connectors used by the mfc function to evaluate the 

possible connections.  When the mfc is evaluated, the selected goal executes the bound 

action, which in turn initiates a connection with a scene agent based on the connectors 

identified by the action.  In this example, a connection satisfying goal1’s connection 

criteria (connectors α and β) has a value of (.8)(.9) = 0.72.  Goal2 and goal3’s connections 

have a value of 0.56 and 0.247 respectively.  Assuming all three connections are possible, 

then goal1’s connectors (α and β) would be used, along with the character agent’s other 

extended connectors, to connect with a scene agent.    

goal1
Active 0.9 reference

Inactive 0.8

Inactive 0.62

0.2
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goal2

goal3
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Figure 32. Character Agent Goals with Bound Actions 

2. Scene Agents 

Scene agents are connector-based composite agents with components and 

behaviors appropriate for generating scenes of a story.  When a character agent connects 

with a scene agent, a sequence of events is initiated in the agent that results in the 
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generation of a scene.  Just as a story world provides the potential for many story lines, a 

scene agent provides the potential for many scenes.  The character agents connected with 

the scene agent interact within the bounds established by the scene agent’s tickets, 

connectors (internal and external), and actions in order to generate a scene.  This section 

describes the components and behaviors that are unique to a scene agent (Figure 33).  

scene ticket

Tickets

Interactions

main
character

salesman

Roles

Einner

Scene Agent

Character Role Interaction ticket  

Figure 33. Scene Agent 

a. Scenes 

The story engine differentiates between a scene agent and a scene. When a 

character agent connects with a scene agent, an internal cascade is triggered within the 

scene agent that results in the generation of one element of the story line.  This element of 

the story line is described as a scene.  The scene is composed of two parts: story engine 
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actions and scene rendering actions.  In the MVC architecture of the ISGS, these two 

parts partition the scene into model/controller actions (story engine actions) and view 

actions (scene rendering actions).  The story engine actions are related directly to the 

story engine CMAS and updating the agents’ states.  These actions are executed during 

the connection as the scene is being generated.  The rendering actions, on the other hand, 

are not executed immediately; rather they are captured in a playlist to be executed when 

the connection is complete.  The playlist is the interface between the story engine and the 

scene rendering subsystem.  The scene, as displayed by the SRS, is an after-the-fact 

visualization of the actions that occurred during the character agent to scene agent 

connection.   

b. Inner Environment 
The scene agent has a set of state variables that describe the “roles” that 

must be filled for the scene.  The roles are filled by character agents.  In keeping with the 

story engine CMAS’s character-centric view of a story, one of these roles is always the 

main character role.  The character initiating the connection is automatically cast in the 

main character role.  The remaining list of roles is domain dependent.  For example, in 

America’s Army: Soldiers the roles include buddy, drill instructor, car salesman, etc.  The 

roles come into play as the scene unfolds.  Just as with a movie or play, the role the actor 

is cast into constrains what the actor can do.  The constraints imposed by the story engine 

are much less restrictive than that of a linear movie or play.  In traditional media, there is 

a fixed script that accompanies the role.  The actor’s freedom is limited to their range of 

talents in delivering their lines.  With interactive stories, the script is not fixed and the 

character agent’s goals and state play a critical role in determining the outcome of the 

scene.  

c. Tickets 
The agent uses tickets to assist in establishing a basic structure for the 

scene.  One of the tickets is designated as the “scene ticket” and is used as a starting point 

for generating the scene.  Figure 33 shows a scene agent with a three-frame scene ticket 

where each frame contains a reference (Equation 15).  In this example, the ticket is 

logically broken into a beginning, middle and end corresponding to the setup of the 

scene, the main action and the conclusion.  The references in each of the frames connect 
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to tickets or actions that move the action forward at run-time.  This process is described 

later in this chapter in the Character Agent to Scene Agent Connections section. 

d. Connectors: External and Internal 

Scene agents use external connectors to sense the outer environment and 

maintain an up-to-date view of its inner environment.  The scene agent’s external 

connector set is partitioned into two subsets.  The first is the set of connectors maintained 

by the scene agent.  The second is a set of connectors associated with each of the “roles” 

in the scene agent.  The state and value of these “role” connectors are not established 

until the character agents connect and fill the roles.  This late binding of connectors at 

run-time allows for a tremendously flexible and contextually sensitive connection 

process.  A special type of action, called an interaction is specifically designed to take 

advantage of this delayed binding.  The interactions, with their non-instantiated 

connectors, create a potential for action.  However, that potential does not take shape 

until the character agents bind to a role. 

In addition, scene agents make extensive use of internal connectors to 

enable the signaling cascade that generates a scene.  The internal connectors are a critical 

component of the agent’s internal control mechanism, used to manage its tickets and 

interactions. 

e. Interactions 

The car sales vignette described at the beginning of this section could have 

played out many different ways depending on any number of factors, including the car 

dealer’s personality and integrity, the buyer’s experience level, and how well the buyer 

liked the cars he was offered.  Interactions are the components that enable this sort of 

variation; they use connectors (internal and external) as their primary control mechanism. 

When a scene is generated during a connection, it is generated on an interaction-by-

interaction basis.   

Interactions are compound actions that bind together at run-time using 

internal connectors to generate complex and contextually appropriate sequences of 

events.  They are comprised of two types of atomic actions: story engine CMAS actions 

and scene rendering actions.  A strict partitioning is enforced to maintain the integrity of 

the story engine CMAS as a stand-alone controller system in the ISGS MVC architecture. 
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(1) Story Engine CMAS Actions. Table 1 lists the set of atomic 

story engine CMAS actions.  They are broken into three categories: actions to update 

state variables (string and numeric), actions to control internal connectors, and an action 

to manage objects. 

 Action Name Parameters Description 
SetStringVariable role 

state variable 
new value 

Set the state variable for the 
character agent filling the designated 
role to the string value specified by 
new value. 

SetNumericVariable role 
state variable 
new value 

Set the state variable for the 
character agent filling the designated 
role to the numeric value specified 
by new value. 

St
at

e 
V

ar
ia
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es

 

IncrementVariable role 
state variable 
delta 

Increment the state variable for the 
character agent filling the designated 
role by the specified delta value.  
Delta can be positive or negative. 

ExtendInternalConnector connector Change the state of the connector to 
extended. 

C
on

ne
ct

or
s 

RetractInternalConnector connector Change the state of the connector to 
retracted. 

O
bj

ec
ts

 ObtainObject role 
object 

Add the object to the inner 
environment of the character agent 
filling the designated role. 

Table 1. Story Engine CMAS Actions 
This relatively simple set of actions is sufficient to update and 

maintain the character agent’s state.  For example, as the car-buying scene is generated, 

the following actions would be among those executed: 

IncrementVariable (MainCharacter, bankBalance, -4000) 
ObtainObject (MainCharacter, car) 

The ObtainObject action will add the car object to the inner environment of the main 

character.  In doing so, the buy-a-car goal will be satisfied and the state of the goal will 

change to achieved.  There are additional actions associated with goals that may be 

executed when a goal changes state.  Continuing with the car example, when the buy-a-

car goal changes state to achieved, a recurring action is initiated that decrements the 
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bankBalance variable on a recurring basis to simulate a recurring car payment.  The 

reactive agent controlling the character agent’s goal structure manages this action.   

(2) Scene Rendering Actions.  Table 2 lists the set of atomic scene 

rendering actions with a brief description.  These actions are processed by the animation 

engine, text-to-voice, and location generator to visually render a scene.  A detailed 

explanation of each action is found in [Elzenga, 2001]. 

Action Name Description 
SetLocation Generate a background. 
PlaySound Play an ambient sound. 
StopSound Stop playing an ambient sound. 
StopAllSounds Stop playing all ambient sounds. 
PlayAnimation Construct an animation. 
PlaySentence Generate a line of dialog. 
PlayMovie Play a movie. 
SetExitCondition Set conditions for ending animations. 
AddScreenTransition Set type of screen transition. 

Table 2. Scene Rendering Actions 
(3) Interaction Sequences. Interactions provide a mechanism for 

conditionally executing story engine and scene rendering actions based on stimuli from 

Einner.  They provide a wrapper around groups of atomic story engine CMAS and scene 

rendering actions so they execute in coordination.  For example, when the car dealer 

greets the young man, a single interaction animates the car dealer, animates the young 

man and plays contextually appropriate dialog for the greeting.  The interaction is played 

out against a background that is appropriate for the time of day and with landscape 

appropriate to the general region where the character is located.  Additionally, during the 

interaction a connector extended on the car dealer agent senses the experience level 

connector on the buyer that causes the dealer to update a state variable indicating he is 

dealing with a naïve buyer.  This state change in the car dealer impacts the remaining 

generation of the scene. 

Interactions have three components: a control function (fc), a set of 

connectors (C) and a set of actions (A) (Equation 31). 
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Interaction i = <fc, C, A> 
 

fc – control function 
C – set of connectors (C ⊆ Ci ∪ Ce) 

A – set of actions (A ⊆ Ase ∪ Asr) 
Ase is the set of story engine CMAS actions 

Asr is the set of scene rendering actions 

Equation 31. Interaction Definition 

The control function is responsible for extending and retracting the 

interaction’s connectors, initiating a connection to continue the interaction sequence, and 

controlling the execution of its atomic actions (Equation 32).  The interaction’s 

connectors, when extended in receptor mode, are used to establish the conditions under 

which it can execute.  The interaction’s connectors are a subset of the scene agent’s 

internal and external connectors, including connectors associated by role.  After the 

interaction executes, it extends internal connectors in stimulus mode to express what the 

interaction just did.   

Given, 
 

Interaction intxi = <fc(i), Ci, Ai> 
Interaction intxj = <fc(j), Cj, Aj> 

where, 
C′i ⊆ Ci is intxi’s set of extended connectors (receptor mode) 
C′j ⊆ Cj is intxj’s set of extended connectors (stimulus mode) 

 
then intxj connects with intxi (conn(intxj, intxi)) iff:  

 (∀cj∈ C′j )∃ci∈ C′i (conn(cj, ci))  
 (conn(cj, ci) is defined by Equation 6) 

Equation 32. Interaction-to-Interaction Connection – conn(intxj, intxi) 
Figure 34 depicts a simple greeting, and response to a greeting, as 

an illustration.  In this example, the main character greets the supporting character.  The 

greet interaction is initiated from the first frame of a ticket.  After the greeting executes, it 

extends an internal “greet” connector.  The two “greet respond” interactions both require 

a “greet” connector, but they are conditional on the mood of the supporting character.  In 

this case, the angry response will be executed.  The response interaction will in turn, 

extend a “greet respond” connector, but with no interactions able to respond to the “greet 

respond,” the interaction chain ends and the next frame of the ticket is executed.   
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This was a simple example to demonstrate the most basic function 

of interactions.  In practice, the happy and angry responses would be combined into a 

single interaction that would execute conditionally based on the state of the supporting 

character.  In the next chapter, a more substantial illustration is presented dealing with 

Army training. 
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Figure 34. Greet / Response Interaction Sequence 
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As previously stated, when an interaction executes, it extends an 

internal connector.  Other interactions can respond to this connector and attempt to 

execute.  If more than one interaction tries to execute, the current approach is to 

randomly select the interaction.  This does not occur very often since the interaction’s 

connector set ensures only contextually appropriate interactions attempt to execute.  The 

random selection tends to provide random variation among appropriate choices.  

However, the random method could be modified using a weighting function similar to the 

most favorable connection function (Equation 26 and Equation 30).  

This process of extending connectors, and responding, creates a 

dynamic and contextual chain reaction of interactions not unlike the signaling cascade 

phenomenon found in cells (Figure 13 and Figure 25).  The next section demonstrates 

how interactions are combined with tickets to harness the contextual chain reaction and 

generate scenes. 

3. Character Agent to Scene Agent Connections 
Story lines are generated by the story engine through a repeating process of 

character agents connecting with scene agents.  As previously described, there is a central 

character agent called the main character that initiates connections with scene agents 

based on its goals as determined by its most favorable connection function.   

  Figure 35 depicts the connection process and resulting generation of a playlist, 

along with a post-connection view of the interaction trace.  In Figure 35(a) the main 

character agent is evaluates its possible connections and ranks them with respect to its 

goals.  In Figure 35(b), the agent initiates a connection with a scene agent.  As a result of 

the connection, the “main character” role is filled. This triggers a cascade, beginning with 

the scene agent extending a connector to initiate a connection with an agent to fill the 

supporting character role.  Once the roles are populated, the scene ticket begins executing 

(Figure 35(c)).  The scene ticket initiates the process by which interactions chain together 

to form contextually appropriate sequences of events.  As a result, the state of both the 

main character and supporting character are updated (story engine CMAS actions), and a 

playlist is generated (scene rendering actions) (Figure 35(d)).  The tree structure in Figure 

35(e) is an after-the-fact portrayal of the interactions (and encompassed actions) executed 
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by the agents as the connection progressed.  This structure was generated based on the 

characters’ goals and state, as opposed to having been laid out in advance and selected for 

a list of predefined plans.   
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Figure 35. Character Agent to Scene Agent Connection 

This next figure extends the single connection/single scene to a multi-

connection/multi-scene story line generated as the main character repeatedly initiated 

connections in pursuit of its goals (Figure 36).   
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Figure 36. Story Line Generated from a Story Engine CMAS Story World 
The story line in Figure 36 is tantamount to a dynamically generated plan.  The 

scenes were generated one connection at a time as the main character agent pursued its 
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goals.  The resultant plan evolved through the run-time binding of tickets and actions 

using the agent’s active connectors.  A depth first traversal of the ticket/scene tree 

explains how the agent achieved its goal, while the connectors provide insight as to why 

the agent generated the plan in the way that it did. 

D. LOGICALLY CONNECTED, GOAL-DIRECTED AND SOUND STORY 
LINES 
This section presents an inductive argument as proof that the story engine 

generates story lines that are logically connected and goal-directed.  Further, it is shown 

that the story lines are sound with respect to the domain of interest.   

1. Logically Connected and Goal-Directed Story Lines 

By induction over the length of the story line, it is shown that story engine 

generates logically connected, goal-directed story lines. 

Let s(n) be a story line of length n generated by the story engine generating 

function S(M, I) (Equation 29).  s(1), a story line of length one, is generated as a result of 

character agent a connecting with scene agent s.   

The connection is established as a function of agent a’s state and agent s’s state, 

as expressed through connectors (Equation 22). 

Given agent a with awareness set W (Equation 24), the set of candidate 

connections W′ is a function of both a’s state, and the state of the scene agent’s in W 

(Equation 25). 

 Result 1.  The set of scene agents that agent a can potentially connect with (W′) is 

established as a function of agent a’s state. 

Selection of scene agent sj ∈ W′ as the connection to initiate is the result of 

evaluating character agent a’s most favorable connection function (mfc).  The mfc is a 

function of agent a’s goals and extended connectors (Equation 30). 

Result 2.  Given a set of candidate connections, agent a initiates a connection with 

a scene agent based on its goals, and state as expressed through extended connectors. 

During the connection, sequences of interactions execute to generate a scene.  

Interaction sequences are self-generated based on the state of character agent a, which 
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initiated the connection, the state of scene agent s, as well as the state of the character 

agents filling the supporting character roles (Equation 32). 

Result 3.  The established connection progresses in a logically connected manner, 

based on the state of all agents involved (as expressed through their connectors). 

From results (1), (2) and (3) above, s(1) is a story line that is logically connected 

and goal-directed. 

s(1) is the product of a connection with a scene agent, where the connection is 

established according to a connector-based, goal-directed selection function.  The 

connection was initiated from a candidate connection set of scene agents, where 

membership in the set was established as a function of agent a’s state and the state of the 

scene agents in a’s awareness set.  Further, the connection progressed in a logically 

connected manner, based on the state of all agents involved. 

Assuming that s(n-1) is a logically connected and goal-directed story line, s(n) is 

likewise logically connected and goal-directed. 

Since s(n) is generated in sequence, the story line can be decomposed into the first 

n-1 scenes concatenated with a story line of length one: 

s(n) = s(n-1) + s(1). 

If s(n-1) is logically connected and goal-directed and the same is true for s(1), 

then s(n) is a goal-directed and logically connected story line of length n. 

2. Sound Story Lines 
The story engine is a simulation engine.  As such, it is used to evaluate software 

implementations of computational models.  The computational model, when combined 

with a data set, is an abstraction of a real world system.  The story engine CMAS is one 

such computational model that formulates the real world system in terms of character 

agents, scene agents, tickets, connectors, interactions, and story engine actions. 

 Equation 29 established the story engine as a generating function (S) that takes as 

input a story engine CMAS (M), along with a set of initial conditions (I), and generates 

output that includes a story line L.  This can be expressed as L∈ S(M, I). 
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The story engine is said to be sound with respect to a domain of interest if S(M, I) 

generating a story line L, implies that L is a story line from the domain of interest.  Let D 

be a domain of interest, then S(M, I) is sound with respect to D if 

L∈ S(M, I) → L∈ D. 

The story engine CMAS is a purely data-driven architecture, where the character 

agents, scene agents, tickets, etc., are instantiated solely from data, not by the CMAS 

architecture.  If D is a real-world domain of interest, let X be a story engine CMAS data 

set used to model D, and Mx be the story engine CMAS instantiated from X.  X describes 

the domain D in terms of character agents, scene agents, tickets, connectors, interactions, 

and story engine actions.  The CMAS data representation of D is a model, and as such, it 

is an abstraction of the real world domain.  Since X is an abstraction of D, let Dx be the 

actual domain modeled by X.   

In the previous section, it was established that the story engine generating 

function generates story lines that are connected logically based on agent connections and 

connector state.  Agent connections are established, and connector state is maintained, by 

the story engine CMAS constructs, strictly as defined by the data.  Therefore,  

L ∈ S(Mx, I) → L ∈ Dx, 
and S(Mx, I) is sound with respect to Dx. 

If X accurately represents the temporal, structural, and procedural relationships 

and constraints of D, then Dx ⊆ D. 

If (Dx ⊆ D) ∧ (L∈ Dx), then (L∈ D). 
∴(Dx ⊆ D) → [L ∈ S(Mx, I) → L ∈ D]. 

So, if the CMAS data set X accurately describes the domain of interest D, then the story 

engine S(Mx, I) is sound with respect to D. 

E. RUN-TIME ANALYSIS AND SCALABILITY OF STORY LINE 
GENERATION 

Story lines are generated on a connection-by-connection basis as initiated by the 

main character agent.  In this section, it is shown that for a given story engine CMAS M, 

there are a factorial number of possible story lines.  In addition, a run-time analysis is 

presented that shows a story line of length k is generated in O(kca) where c is the number 

of connector types and a is the number of agents in the story engine CMAS.   
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1. Run-time Analysis 

Let M be a story engine CMAS with a agents (a1 scene agents and a2 character 

agents) and a connector set with c connector types.  At any given step of the story line, 

the main character agent (amc) could have at most c connectors extended and a1 scene 

agents in its awareness set.  If amc has c connectors extended, then to determine if it can 

connect to an agent ai ∈ a1, it must compare each of its c connector types with the 

matching type (if extended) on ai.  This comparison is a constant time O(1) operation.  

So, in the worst case, amc is able to evaluate its connection with ai in time O(c).  If there 

are a1 agents, each with c connectors, then the main character requires at most ca1 

comparisons to determine which scene agent to connect with.   

Once a connection is established between the main character agent and the scene 

agent, the scene agent must then establish connections with the supporting character 

agents.  There are at most a2-1 character agents to fill the supporting character roles (one 

of the characters is the main character).  The scene agent must make at most c(a2-1) 

comparisons to fill its supporting character roles.  Therefore, at each step of the story line 

generation, the number of comparisons to initiate all required connections and begin the 

scene generation process is c(a1) + c(a2-1), which is equal to c(a-1), or O(ca). 

Scenes generate by executing a subset of the scene agent’s set of internal 

interactions.  Since each interaction can execute at most once, this process occurs in 

constant time.  Therefore, a single element of the story line is generated in O(ca), and a 

story line of length k, is generated in O(kca), where c is the number of connector types 

and a is the number of agents in the story engine CMAS.  

2. Story World Dimension 
Let N(M) represent the number of story lines possible from the story engine 

CMAS M and let N(M, k) be the number of possible story lines of length k.  It is shown 

that N(M) is O(a1!), where a1 is the number of scene agents in M. 

Given the set of a1 scene agents, if it is assumed that each scene agent can be 

connected with at most once, and that all orderings and combinations are possible, then 

the number of possible story lines of length k (k ≤ a1) is equal to the number of k-

permutations from a set of a1 distinct scene agents, denoted P(a1, k).  This is, however, an 
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upper bound because the actual number of possible story lines is a function of the 

temporal constraints on their ordering and combination as implied by tickets and 

connectors.  Therefore, 

),(),( 1 kaPkMN ≤ . 
Summing across story lines from length 1 to a1 yields; 

)!()(
)!(

1!

)!(
!

),(),(

1

1 1
1

1 1

1

1
1

1

1

1

11

aOMN
ka

a

ka
a

kaPkMN

ak

k

ak

k

ak

k

ak

k

=
−

=

−
=

≤

∑

∑

∑∑

=

=

=

=

=

=

=

=

 

Therefore, given a story engine CMAS M, there are a factorial number of possible 

story lines, and for any given story line of length k, the story engine generates the story 

line in time O(kca), where c is the number of connector types and a is the number of 

agents in the story engine CMAS. 

F. SCENE RENDERING SUBSYSTEM 

The Interactive Story Generation System (ISGS) combines the story engine with a 

scene rendering subsystem (SRS) and a user interface to present and control interactive 

stories (Figure 29).  The SRS and graphical interface were developed independent of the 

story engine by programming teams supporting the America’s Army: Soldiers project.  In 

its current state, the ISGS allows for user intervention between scenes but not during the 

scenes, resulting in interactive stories, but not interactive scenes.  While the story engine 

is capable of supporting intra-scene user intervention, the SRS, at present, is only able to 

render scenes in their entirety.   

The SRS provides an after-the-fact view of the actions that occurred during the 

agent-to-agent connection.  The story engine and SRS interface via a playlist generated 

by the scene agent.  The playlist is a compilation of SRS specific commands used to 

render the scene.  The SRS is comprised of three integrated components; an animation 

engine that controls the characters’ movements on screen, a location generator that 

creates contextually appropriate photo-realistic backgrounds and a text-to-voice system 

that combines prerecorded dialog pieces in accordance with a narrative grammar. 
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1. Animation Engine 

The animation engine operates on an event-based, time relative structure for 

media playback.  In this scheme, animations are not scheduled for play at strict times or 

for a predefined number of frames.  The length of the animation is dependent on outside 

cueing, such as sound files beginning to play, sounds files completing, or keystrokes and 

mouse clicks.  In the opening of the car lot scene, the car dealer greets the potential 

buyer.  From the SRS perspective, this entails animating the car dealer speaking, 

animating the buyer listening and playing a greeting dialog.  The greeting should be 

contextually appropriate, so the exact series of sound files to be played is not set until the 

greeting interaction is executed.  As a result, the length of time the greeting dialog plays 

is variable.  In order to accommodate varying length dialog, the character animations 

must play in synch with the spoken dialog.  Sustained animation, synchronized to outside 

cueing, has been used successfully in a number of applications including the Microsoft 

Office 97 office assistant [Kessler and Kilgore, 1997].   

The SRS animation engine constructs animations from individual frames of 

digital imagery.  Actors are filmed against a blue screen going through a range of motions 

and gestures.  The raw media is processed and a portion of it is used to construct a 

database of animation frames.  Much like a cartoon animator brings a character to life 

through a sequence of still images, the animation engine uses the same technique to 

animate a character agent using individual frames of digital imagery.  For a given 

animation action, the engine selects a set of prescribed frames from the database and 

plays them in accordance with action-specific ordering and branching rules to generate 

the animation.  Each character has a fixed database of frames.  But, once the frame set is 

established and cataloged, the frames can be reused in many different animations.  A 

relatively modest set of frames can be used to produce hundreds of on-screen actions.  A 

detailed description of the animation engine can be found in [Elzenga, 2001]. 

2. Location Generator 

Locations are the stage on which the story action takes place.  From a single data 

set, the story engine is capable of generating hundreds of scenes being played out in 

many different settings (locations).  Rendering the scenes requires the ability to situate 
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stories and characters in contextually appropriate and believable locations.  The location 

generator is responsible for constructing backgrounds that are appropriate for the given 

scene and also fit the character.  It manages a database of reusable media pieces to 

construct the locations at run-time (Figure 37).  

A typical location consists of six to ten media pieces that include a sky, mid-

ground and foreground, context-specific props, and character animations.  If the character 

is at a beach in southern California, the background should reflect a smooth sandy beach.  

On the other hand, if the same scene occurs while the character is in New England, the 

background should include a rocky shoreline.  The location generator populates location 

templates at run-time with media that is appropriate for the character’s current state.  The 

location generator makes use of the character agent’s connectors when populating the 

template.  Details of the instantiation process can be found in [Elzenga, 2001]. 
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Figure 37. Location Templates 

3. Text-to-Voice 

The process for constructing character dialog is similar to constructing locations.  

With locations, a template is used to guide the selection of images used to create the 

background.  In the case of the text-to-voice system, a generative grammar is used to 

define sentence structures.  These structures included variables appropriate to the scripts 

and the domain.  Voice actors record full sentences that are then split into atomic pieces 
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and placed in a database.  The text-to-voice system’s sentence generator parses sentence 

definitions and constructs the dialog from the database of atomic speech files. 

Figure 38 shows an example of a greeting sentence for the car dealer scene.  

Based on the time of day, gender and age of the customer, and the dealer’s analysis of the 

customer’s experience level, an appropriate greeting is constructed.  The greeting can 

range from “Good morning ma’am, can I help you?” to “Hi there young man.  Welcome 

to Billy Bob’s.  This is your lucky day.  I just received a car that you are going to love.”  

[Elzenga, 2001] provides a full description of the text-to-voice system and its integration 

with the animation engine. 

<greeting> :: <salutation:parameters><title:parameters><welcome:parameters> 
 
<salutation>[parameters: time of day] 
 Good morning [between 0800 and 1200] 
 Good afternoon [between 1200 and 1800] 
 Good evening [between 1800 and 2200] 
 Hello [random] 
 Hi there [random] 
 
<title>[parameters: gender, age (as determined by car dealer)] 
 sir [male, 30 or over] 
 ma’am [female, 30 or over] 
 young man [male, under 30] 
 young lady [female, under 30] 
 
<welcome>[parameters: buyer’s experience level as determined by car dealer] 
 Can I help you? [experienced] 
 What can I do for you? [random] 
 Welcome to Billy Bob’s. This is your lucky day.  I just received a car that 
 you are going to love. [ naïve] 

Figure 38. Text-to-Voice Generative Grammar 

G. GRAPHICAL INTERFACE 
The graphical interface provides the interactive link between the story engine and 

the user.  As a simulation engine, the story engine is capable of generating story lines 

without intervention.  However, by allowing the user to interact with the agents, the story 

engine is able to present a story line that is highly personalized.  In the ISGS MVC 

architecture, the interface augments the automated control provided by the story engine 

CMAS with a “manual” control mechanism.  The level of interaction is application 
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dependent.  The user can take on a highly involved first person role as a character in the 

story, or step back and influence the story via high-level adjustments to the story world’s 

relations and laws.  In America’s Army: Soldiers, presented in the next chapter, the user 

guides their character by adjusting the character’s goals and values, but they do not have 

direct control over the character’s actions.  The character remains an autonomous agent.  

H. SUMMARY 

The ISGS structures and presents interactive stories through an instance of a 

CMAS called a story engine CMAS.  The story engine CMAS is a data-driven 

architecture that when combined with a domain specific data set, generates dynamic, 

goal-directed story lines.  The SRS processes playlists generated by the story engine’s 

scene agents, to present a view of the story as it unfolds.  Through a graphical interface, a 

user is able to interact with the agents and objects of the CMAS story world.   

The story engine’s story lines are assembled on a connection-by-connection basis 

as a by-product of character agents pursuing their goals.  The generation of a story line is 

equivalent to the construction of a historical tree that records the derivation of the agent’s 

plan to achieve its goal.  A depth-first traversal of the tree provides an explanation of how 

the agent reached its objective. 
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VII. CMAS DATA SET IMPLEMENTATION – AMERICA’S 
ARMY: SOLDIERS 

 

A. INTRODUCTION 
The story engine was fielded as the underlying simulation engine in an 

interactive, story-based role-playing game for the U.S. Army.  This chapter introduces the 

America’s Army project, and describes the story engine CMAS data set used to 

interactively generate story lines focused on army career progression.  The tickets, 

connectors, scenes, and characters, including their goals and personalities, are presented.  

The America’s Army: Soldiers project is offered as a proof-of-concept of this dissertation 

research. 

B. AMERICA’S ARMY: SOLDIERS 
America’s Army is a suite of two applications developed for the U.S. Army 

intended to provide young people with accurate, easy-to-assimilate information about the 

Army so they can develop a better understanding of army life and available opportunities.  

The two applications, America’s Army: Operations (AA: Ops) and America’s Army: 

Soldiers (AA: Soldiers) offer a realistic portrayal of Army training, missions and values. 

AA: Ops is a first-person perspective gaming environment that demonstrates life 

in the infantry.  The experience begins with required individual training, such as basic 

rifle marksmanship and Basic Combat Training (BCT).  Once qualified, the player is able 

to take part in multi-player missions.  AA: Ops focuses primarily on combat training and 

tactical missions.  While these are critical, they represent only a small part of army life.   

AA: Soldiers is a sophisticated role-playing game that provides a look at Army 

personnel and career opportunities by allowing the player to guide a character through a 

career in the Army.  It presents the Army through stories that are sensible yet surprising, 

interactive, and non-repeating.  In order to visually portray Army bases, offices, barracks 

and facilities as accurately and faithfully as possible, digital photographic and video 

imagery was chosen as the display medium for the Scene Rendering Subsystem.   

A story engine CMAS data set was constructed to accurately capture the Army 

domain in terms of career progression, general training and specialty schools, as well as 

on and off-duty life.  
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Interaction in the game commences at character definition time, and continues 

throughout the game by adjusting the character’s “core values” and goals.  The player 

cannot exert direct control over the character, i.e., cannot make a specific decision for the 

character.  The character is an autonomous agent; as such, the player must guide their 

character through the story world by intermittently adjusting its goals and values. 

C. INTERACTIVE STORY GENERATION SYSTEM DATA 

The Interactive Story Generation System data is partitioned into two sets, data 

used to define the AA: Soldiers story world, and data necessary to visually render the 

scenes (Figure 39).  The story world is defined by a story engine CMAS data set 

comprised of three primary parts: character agent definitions, scene agent definitions, and 

object definitions.  Connectors from the character agent’s inner environment and goal set, 

as well as a small collection used by the scene agents to describe the setting of the action, 

are combined to make up the AA: Soldiers connector set.  This set is described later in the 

chapter.  The Scene Rendering Subsystem is instantiated from data that is specific to each 

of the modules: speech, animations and locations. 
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Figure 39. AA: Soldiers Interactive Story Generation System Data Set 

D. CHARACTER DEFINITIONS 
Characters in AA: Soldiers are defined according to their personality, aptitude and 

goals.  Personality is delineated in terms of the Army’s seven “core values” [U.S. Army, 

1999], while aptitude is measured according to six “resource” levels.  A character is also 

bestowed with a set of goals, which are managed by the player.  In addition, character 

agents are instantiated with a set of tickets and actions reflective of Army career 

progression.  In terms of story worlds and story lines, the main character’s personality, 

aptitude and goals establish the initial conditions for the story world.  These attributes 

also combine to drive the character’s behavior and, ultimately, the story line.  While 

tickets provide general story direction, i.e., Army career progression, the character’s 
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goals influence its path through the story world.  The character’s aptitude, as determined 

by its resources, determines how quickly the character progresses toward achieving its 

goals.  They provide fuel for the character.  Finally, personality establishes how steadfast 

the character is in working towards its goals.  Low core values can result in the character 

losing focus and being led astray.   

This application is designed to introduce young people to all aspects of the Army, 

including providing them with a view of what the Army expects of its recruits and 

qualified soldiers.  Misaligned values, resources and goals can attract the character to 

scenes that exploit out-of-balance conditions.   

1. Actors, Characters and Roles 
The SRS uses digital imagery and recorded audio to animate the characters and 

construct their dialog.  As such, a set of “actors” were filmed and photographed against a 

blue-screen, and recorded in a sound studio to generate the required images and audio.  In 

conjunction with the actors, the story engine maintains a list of recognized “roles.”  These 

roles include main character, supporting character, drill instructor, car salesman, and so 

on.  Associated with a role is the requirement to take certain physical actions, i.e., look 

left, point right, kneel down, etc.  Roles such as main character and supporting character 

are very general and require a wide range of actions.  Other roles are more specific, such 

as the salesman, and require a smaller range of actions.  Since not all actors have the 

digital frames to support every possible action, an actor definition file is used to delineate 

the roles the actor is capable of filling.  In the case of the main character “role,” the 

player selects an “actor” and sets values, resources and goals to define their “character.”  

Figure 40 depicts the screen used to define the player’s “character,” which fills the main 

character “role.”  The remaining actors are mapped to characters by the story engine.   
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Figure 40. AA: Soldiers Character Definition Screen 

2. Core Values and Resources 
A character’s personality is defined in terms of the Army’s seven core values: 

loyalty, duty, respect, selfless service, honor, integrity, and personal courage (Figure 41).  

There is a state variable corresponding to each of these that ranges from zero to 100.  

Associated with each variable, is a connector whose control function graduates the 

variable into five levels ranging from “low” to “high.”  As the variable changes value, the 

connector changes state accordingly.  When a new game is initialized, the player defines 

a character, which includes distributing a limited budget of “value points” among the 

seven core values.  As the game progresses, additional points are accumulated, or lost 

based on the character’s actions.  The player intervenes as desired to distribute newly 

accumulated points, or readjust the current cache of points. 
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Figure 41. Character Personality Defined by Army Core Values 
Six resources are used to drive the character: energy, skill, strength, knowledge, 

financial, and popularity (Figure 42).  Like the core values, the connectors associated 

with each of these are graduated from “low” to “high.”  However, unlike core values, the 

player cannot directly adjust the resources.  Resources increase and decay based on the 

character’s actions and achievements. 

 

Figure 42. Character Aptitude Expressed in Terms of Resources 
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3. Goals 

AA: Soldiers’ goal set is widely varying, including goals targeted at succeeding in 

the Army, and others representative of the target age group of 18 to 24 year olds.  There 

are 60 goals in the application that deal with personal and professional growth (Table 3).  

The goal set was arrived at through joint consultation between the AA: Soldiers project 

manager and Army’s project sponsor.  Personal goals range from party, date, and buy a 

car, to establish credit, college degree and time management.  The professional goals 

cover the major areas of career, soldiering and maturing.  Career goals deal with solving 

work problems, creating solutions, and multi-tasking.  Maturing goals cover aspects such 

as dealing with authority, following directions and paying attention to detail.  Soldiering 

goals focus the character on developing professional skills required of a soldier, such as 

marksmanship, map reading and meeting physical training requirements.   

Have Fun Party Be Cool 
Minimize Work Pay Attention to Detail Deal with Authority 
Teamwork Work Hard Study Skill 
Advanced Study Skills Oral Communications Good Vocabulary 
Writing Skills Advanced Writing Skills Physical Exercise 
Physical Training (PT) Program Amateur Sports Marksmanship 
Advanced Marksmanship Personal Luxuries Stereo 
TV Computer Games Home Entertainment Center 
Car Sports Utility Vehicle Luxury Car 
Date Relationship Marriage 
Baby College AA Degree College Bachelors Degree 
College Graduate Degree Professional Certificate Qualify PT Run Time 
Qualify PT Push-ups Qualify PT Sit-ups PT Badge 
Advanced PT Extreme PT Map Reading 
Visualize Map Reading Skills Reading for Speed 
Advanced Reading Skills Time Management Multi-tasking 
Meet Deadlines Follow Directions Solve Work Problems 
Create Solutions Foreign Language Establish Credit 
Pay Bills Savings Account Manage Money 
Live Off Post Read Technical Manuals Trouble Shoot Problem 

Table 3. Character’s List of Potential Goals 

Unlike most agent-based simulations, where the agent maintains its own goal 

priorities, in this application the player is responsible for selecting and prioritizing the 

their character’s goals.  The player selects and prioritizes up to five goals (Figure 43). 
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Figure 43. Goal Emphasis and Progress 
Goals have preconditions for selection, requirements that must be met to achieve 

the goal, and a set of results or effects of achieving the goal (Figure 44).  Preconditions 

are defined by a set of prerequisite goals that must be achieved before the goal is 

available to be selected.  This relationship creates a “goal hierarchy,” a portion of which 

is shown in Figure 45.  The result of achieving a goal includes unlocking new goal 

opportunities, adding to, or subtracting from resource levels, and strengthening or 

weakening values.  The goal’s progress (measure) and emphasis (weight) are used to 

drive the player’s experience as they progress through the game. 
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Figure 44. Goal Description Including Prerequisites, Requirements and Results 
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Figure 45. Goal Hierarchy Formed from Goal Prerequisites 

4. Tickets: Army Training Progression 

Army training progression, particularly in the early stages of a soldier’s career, is 

highly structured (Figure 46).  This structure is reflected in the tickets defined for the 

character agents.  Table 4 provides a list of the primary tickets used to structure the 

character’s progression through the initial stages of Army training.  These relatively 

simple tickets are sufficient to structure approximately the first nine months to a year of a 

recruit’s life in the Army.  At the current time, this period of training is the primary focus 

of AA: Soldiers.  The list described in Table 4 is only a partial list, in that for each of the 

Army occupational specialties, there are tickets that capture the unique elements of the 

training regimen.  Basic Combat Training (BCT) and the initial stages of One Station 
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Unit Training (OSUT) are similar for all career specialties.  However, Advanced 

Individual Training (AIT) and the later stages of OSUT are specific to the operational 

specialty selected.   

MEPSRecruiter

OSUT

BCT AIT

Operational
Duty

Operational
Duty

Combat Arms

Non-Combat Arms

MEPSRecruiter

OSUT

BCT AIT

Operational
Duty

Operational
Duty

Combat Arms

Non-Combat Arms  

Figure 46. U.S. Army Career Training Progression 

Ticket Description 
MEPS Military Entrance Processing Station: An initial processing stage 

required for all military recruits.  
BCT Basic Combat Training: Initial training for recruits entering non-

combat arms specialties.   
AIT Advanced Individual Training:  Follow-on training to BCT that is 

related directly to the recruit’s chosen specialty.  
OSUT One Station Unit Training: Basic and specialty training combined 

into a single program for combat arms specialties. 

Table 4. Army Training Progression 
Once a character enters their first duty assignment, the career progression 

possibilities begin to expand.  Just as with any profession, future opportunities are 

normally a function of past performance.  In the Army, there are a number of educational 

and professional opportunities that are based on performance.  Some of these include 

Airborne training, Ranger training, and Special Operations.  These schools, and paths to 

advanced designations, are structured as tickets, with connectors used to enforce the 

prerequisites in terms of core values (integrity, personal courage,…), resources 

(knowledge, strength,…) and experience, such as AIT complete and Airborne qualified. 

E. CONNECTOR SET 
This section describes the AA: Soldiers connector set.  It is a compilation of 

connectors used to capture character state, Army training progression, and backdrops for 
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the scenes (Table 5 and Table 6).  As indicated earlier, an AA: Soldiers character is 

described according to their core values, resources and goals (Table 5).  Army career 

progression is represented by occupational specialty, post (Army base), career phase, and 

duty phase (Table 6).  Career and duty phase combine to model the stages of an Army 

career.  Within the career phases, particularly the training segments, there is a well-

defined structure that is represented by the duty phase connector.  Figure 46 depicts the 

career phases from initial enlistment up through the soldier’s first operational duty 

assignment.  Sixteen military occupational specialties (MOS) and fourteen posts are 

represented in the game.  Finally, there are connectors that assist in establishing the stage 

setting (location) where the action takes place and scene plays out (Table 6). 
Connector Type Connector Values

Loyalty Low, MediumLow, Medium, MediumHigh, High
Duty "

Respect "
Selfless Service "

Honor "
Integrity "

Personal Courage Low, MediumLow, Medium, MediumHigh, High
Energy Low, MediumLow, Medium, MediumHigh, High

Strength "
Knowledge "

Skill "
Financial "
Popularity Low, MediumLow, Medium, MediumHigh, High
Have Fun Selectable, Selected, Achieved

Party "…

"
Marksmanship "

Teamwork "
Manage Money Selectable, Selected, Achieved

C
or

e 
Va

lu
es

R
es

ou
rc

es
G

oa
ls

 

Table 5. Connectors Describing Character Personality, Aptitude and Goals 
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MOS Post Duty Phase Career Phase Location Group Place
Infantry Ft. Benning Arrival Recruiter Formation Gym

Combat Engineering Ft. Bliss Indoctrination MEPS Work Detail Office
Field Artillery Ft. Bragg Phase 1 BCT Training Station Barracks

Air Defense Artillery Ft. Eustice Phase 2 AIT Field Training Apartment
Special Forces Ft. Gordon Phase 3 OSUT Off Duty Game Room

Armor Ft. Hood Qualified Operational Duty Classroom Weight Room
Signal Operations Ft. Huachuca Graduation Discharged Honorable PT Field Garage

Electronic Maintenance Ft. Jackson Discharged OTH Rifle Range Aircraft hangar
Chemical Ft. Knox Retired Parking Lot

Ammunition Ft. Lee Obstacle Course
Administration Ft. Leonard Wood Commissary

Petroleum and Water Ft. Sam Houston PX
Medical Ft. Sill Chapel

Supply and Services Ft. Wainwright Bank
Military Police Car Lot

Military Intelligence Lake
Jail

Pawn Shop
Barracks

Restaurant
Airport

Career Progression Connectors Loction Connectors

 

Table 6. Connectors Describing Army Career Progression and Locations 

F. SCENE DEFINITIONS 
Scenes are defined in terms of interactions, tickets, internal connectors and roles 

(Figure 33).  This section demonstrates, by example, the scene generation process, and 

how the outcome of the scene is a function of the main character, as well as the characters 

filling the supporting roles.  The following portrays the main character attempting to 

qualify in the run portion of the physical training (PT) test during phase two of basic 

training.  

1. Exemplar Scene: Physical Training 
The outcome of a scene includes not only the rendering and result (quit, fail or 

complete the run), but also the changes that occur to the characters participating in the 

scene.  Figure 47 depicts the in-process connection between the main character and PT 

scene agent, with the supporting character connection already established.  Table 7 

catalogs the interactions from the PT Scene agent, including the connectors (internal and 

external) and actions.  The scene progresses according to the three-frame scene ticket in 

the scene agent.  The first and last frames deal with setting and clearing the stage (“Set 

Stage” and “Clear Stage” respectively).  These two actions are not described since they 

deal almost exclusively with the Scene Rendering Subsystem.   
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The main action of the scene is initiated in the second frame of the scene ticket 

with the “Start Run” interaction (Table 7).  This scene is meant to challenge a character 

with marginal personal courage and strength; characters with medium to high personal 

courage and medium to high strength complete the run without problem (Table 7: 

Finish(1)).  A main character with low personal courage or low strength could possibly 

complete the run, provided they get some encouragement from the supporting character 

(Table 7: Encourage, Finish(2)).  On the other hand, a supporting character with low 

selfless service can discourage the main character causing them to quit (Table 7: Quit). 

As the scene generation progresses, the values and resources of the characters are 

updated, leaving them in a new state once the agents disconnect.  In this example, the 

supporting character discourages the main character, causing the main character to quit.  

The result is lower strength and personal courage on the part of the main character and 

lower selfless service and loyalty on the part of the supporting character.   

Values
Selfless Svc: 16
Loyalty: 25

Resources
Char 3

Scene Ticket

Roles
Main Char: Char 1
Support Char: Char 3

Start Run

Doubt

Finish(2) Finish(1)

Encourage

Discourage

Fail

Quit

After Connection – Before Execution

Values
Pers Crg: 15

Resources
Strength: 22

Duty Phase (DP): φ2

Career Phase (CP):BCT

Char 1

φ2

BCTCP

DP

Crg

Str

Low

Low

SvcLow
Start
Run

Clear
Stage

Set
Stage
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Loyalty: 22
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Scene Ticket

Start Run
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Finish(2) Finish(1)

Encourage

Fail

Quit

After Execution
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Pers Crg: 13

Resources
Strength: 19

Duty Phase (DP): φ2

Career Phase (CP):BCT

Char 1
CP

DP

Crg
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Low

Low

φ2

BCT
SvcLow

Start
Run

Clear
Stage

Set
Stage

Discourage

Roles
Main Char: ____ 
Support Char: ____
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Scene Ticket
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Support Char: Char 3

Start Run
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Finish(2) Finish(1)
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Discourage

Fail
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After Connection – Before Execution
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Resources
Strength: 22

Duty Phase (DP): φ2

Career Phase (CP):BCT
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φ2
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DP

Crg

Str

Low

Low
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Figure 47. Basic Physical Training: Run Qualification Scene 
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Interaction Connectors Actions

Start Run
IC:   CueStartRun IC:   Run Started

Finish(1)

IC:   Run Started
MC: Strength (Med - Hi) and
       Personal Courage (Med - Hi)

IC:   Finish
MC: Personal Courage +2
       Strength +2

Doubt Ability
IC:   Run Started
MC: Strength (Low) or
       Personal Courage (Low)

IC:   Doubt

Encourage

IC:   Doubt
SC: Self Svc (Med - Hi)

IC:   Encourage
SC:  Loyalty +1
       Selfless Service +1
MC: Personal Courage +2

Discourage

IC: Doubt
SC: Selfless Service (Low)

IC:   Discourage
SC:  Loyalty -3
       Selfless Service -2
MC: Personal Courage -2

Fail

IC:   Encourage
MC: Personal Courage (Low)
       Strength (Low)

IC:   Quit
MC: Personal Courage -1
       Strength -3
      Loyalty +1

Quit
IC:   Discourage IC:   Quit

MC: Strength -3
      Loyalty -1

Finish(2)
IC:   Encourage
MC: Strength (Med - Hi) or
       Personal Courage (Med - Hi)

IC:   Finish
MC: Strength +2
       Loyalty +3  

IC: Internal Connector, MC: Main Character, SC: Supporting Character 

Table 7. Interactions for Basic Physical Training: Run Qualification Scene 

2. Exemplar Story 
An exemplar story is provided in Appendix A.  The description begins with the 

player’s selection of an actor and definition of a character, and continues through the 

initial scenes of a basic training story. 

G. OBJECTS 
In this application, objects are associated closely with goal achievement.  There is 

a relatively small set of objects, relating to possessions the character can accumulate or 

long term commitments on the part of the character (Table 8).  These possessions and 

commitments carry with them recurring costs, either financial or in terms of time, or 

both.  For example, buying a car results in recurring car payments.  Failure to meet the 

commitments can lead to difficulties.  On the other hand, successfully managing the 
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commitments leads to rewards in terms of strengthening the character’s values and 

resources, and exposing additional goal opportunities. 

Car 
Sports Utility Vehicle 

Luxury car 
TV 

Stereo 
Computer 

Video Games 
Home Entertainment Center 

Steady Relationship 
Spouse 
Baby 

Table 8. AA: Soldiers Story World Objects 

H. SUMMARY 
AA: Soldiers provided a unique opportunity to combine research with application.  

It was a collaborative effort involving a team of nine artists, sound technicians and 

programmers working on various media production and software development efforts 

associated with the Interactive Story Generation System.  The efforts included 

development of the animation engine, location generator, text-to-voice system and 

interface, with parallel and complimentary efforts to generate the underlying media.   

The AA: Soldiers project serves as proof-of-concept that the CMAS architecture, 

and story engine CMAS, described in this dissertation are capable of generating 

interactive stories. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 
 

This chapter summarizes the research presented in this dissertation.  It begins by 

highlighting the major contributions, and is followed by a description of possible avenues 

for application.  While this research made contributions to the field of interactive stories 

and multi-agent system simulation, it also raised a number of important questions.  

Accordingly, the chapter concludes with a discussion of recommendations for future 

work.   

A. CONCLUSIONS 
The story engine provides a fundamentally new approach for generating 

interactive stories.  The underlying concept moves away from centralized control, and 

generates stories as a by-product of agent interactions through the distributed architecture 

of a multi-agent system.  The story engine is a robust simulation engine that is not tied to 

any single domain or display medium.  The domain independent nature of the story 

engine is a characteristic inherited from the general CMAS architecture.    The bottom-up 

design employed by the story engine allows it to scale to large story worlds, and generate 

story lines from a factorially huge story space. With the protagonist-centric exploration of 

the story world, where the protagonist responds to the user’s interventions, there is a 

strong sense of perceived consistency in the story lines as the user guides their character’s 

journey. 

The story engine CMAS definition provides a formal and descriptive notation for 

translating an abstract story world into software.  Using such an architecture, researchers 

can explore, manipulate and stress story worlds through the use of agents. 

The formal description of a Connector-based Multi-Agent System (CMAS) 

architecture, along with accompanying description of an agent communication, 

coordination and control process based on connectors and connecting, provides an 

avenue for researchers to investigate the capabilities of connector-based simulation. 

The proof-of-concept implementation of the story engine in AA: Soldiers 

demonstrates the feasibility of the CMAS architecture, and specifically, the instance of 

the architecture as defined by the story engine CMAS.  The specific components and 
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operations of the story engine CMAS capture the requisite elements to describe a story 

world and, more importantly, generate story lines. 

B. APPLICATIONS 

Returning to the initial motivation for this research, founded in the belief that 

there is value to be gained from “linking entertainment and defense,” the applications for 

interactive story are resident in both domains.  The story engine provides an advanced 

simulation methodology for training and education, as well as for story-based interactive 

entertainment.  While the story engine blurs the lines between simulation and 

entertainment, this research leaned more toward defense application at the possible 

expense of immersive narrative entertainment.   

1. Educational Gaming 

The America’s Army: Soldiers project is a game with a message.  The Army 

recognizes that in order to attract young people to the military, it must first educate them 

as to what the Army has to offer.  In this sense, the story engine is very much an 

information packaging and presentation tool.  At the same time, it is important to present 

the message in a form that is appealing to the target audience (i.e., 18 to 24 year olds).  

On this front, the entertainment value of the engine takes center stage.  By combining 

accurate information with a game-like interface, and presenting it in a personalized story 

format, it is possible to achieve an engaging, educational, and entertaining experience. 

2. Scenario-Based Training 
Scenario-based training involves the use of scenarios to help people better 

understand the decisions they have to make on a day-to-day basis. It is particularly 

effective for situations where there is no single right or wrong answer.  When presented 

correctly, scenario-based training goes beyond what can be found in “the manuals” and 

challenges the trainee with events anchored in lessons learned and on-the-job experience.  

Allowing a trainee to explore paths that may lead to undesirable outcomes is oftentimes 

more valuable than simply providing the answer.  Recognizing the correct path is a 

matter of both knowledge and experience.  In its current form, the story engine, and entire 

ISGS, might be utilized as a general-purpose interactive scenario-based training system.  
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C. FUTURE WORK 

1. Narrative Structure 

The story engine constructs stories that follow logical cause and effect 

relationships, and are goal-directed.  It adheres to the constraints of the domain and 

generates well-structured interactive story lines detailing the character’s passage through 

the story world.  The original expectations of this research were to develop a highly 

scalable simulation engine to meet the above objectives, while at the same time following 

a pronounced narrative structure.  This research concluded with the first goal met, and 

makes progress towards the second.  Chapter II described a number of narrative 

structures used in modern-day screenplays.  These structures provide a design model for 

defining software narrative templates.  A character agent’s most favorable connection 

function might be modified to rate candidate connections, not only according to goal 

weight, but also according to their fitness with respect to a narrative template.  By 

influencing the character agent to connect with scene agents that are not only within it’s 

set of candidate connections, but also aligned with a narrative template, stories with a 

more pronounced narrative structure will be possible. 

2. Potential Outcome Modeling 
The CMAS architecture provides an avenue for capturing complex domains in 

software.  It makes it possible to model a domain of interest and explore the space using 

goal-directed agents searching for “interesting outcomes,” where an “outcome” is 

described as an achieved goal, plus the path taken by the agent to achieve the goal; and 

“interesting” is defined by a domain-specific metric. By creating agents with malevolent 

goals, it may be possible to explore a domain, and thereby identify and exploit unforeseen 

weaknesses.  In addition, it is possible to recreate the path of choices to reach the goal by 

following the agent’s sequence of connections and connectors. 

3. Improved Cognitive Architecture 

The character agents employed in America’s Army: Soldiers make use of a very 

simple cognitive architecture comprised of personality and aptitude state variables (core 

values and resources respectively).  This representation is adequate for modeling 

character behavior with respect to a game, but it is not sufficient for modeling realistic 
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human performance and behavior.  Realist performance is a function of imperfect 

perception, reduced cognitive processing and behavior that is not always optimal.  These 

imperfections are often times due to a lack of information, misperception of stimuli, or 

limited cognitive resources.  The result is reduced, yet realistic, human performance.  

[Wellbrink, 2002] is exploring the use of a complex adaptive system as the basis for a 

cognitive architecture that models reduced human performance.  The story engine will 

benefit from the incorporation of an improved cognitive architecture for the character 

agents, particularly when the agents are used to explore complex domains for potential 

outcomes.   

4. Relations 
[Roddy and Dickson, 2000] provides a detailed discussion of relations as they 

apply to multi-agent systems.  Included in this work is the description of an architecture 

for managing inter-relationships among agents called RELATE.  Reformulating 

RELATE as a connector-based architecture, and incorporating it into connector-based 

composite agents will provide a notable enhancement for modeling relation-centric 

domains, such as those involving military command structures. 

5. Generalized Connecting 

In the current implementation of the CMAS architecture and story engine, 

connections only occur across type-matched connectors.  This constraint might be relaxed 

to allow connectors to connect based on generalization relationships (i.e., via a 

superclass/subclass or superinterface/subinterface hierarchy).  This generalization 

supports object-oriented design patterns and will permit connectors to connect with 

“kinds” of connectors vice matching types.  When moving away from modeling highly 

structured domains such as military career progression, it may also be beneficial to 

explore the use of fuzzy sets as a basis for establishing connections [Zadeh et al., 1996]. 

6. Agent Learning 
Tickets provide a means of capturing procedural knowledge.  By allowing agents 

to augment their ticket set during a connection, procedural knowledge (i.e., experience) 

can be passed from one agent to the next.  For example, when an agent connects with a 

training scene, additional tickets that capture the learning objectives of the course could 



 
 
 
 

 

147 

be passed to the agent.  This sort of ticket passing might be used to simulate decentralized 

or interactive rote learning as described by [Weiss, 1999].   

D. SUMMARY 

This chapter presented the major contributions of this work: a general-purpose 

multi-agent system simulation architecture based on connectors, and a scalable 

simulation architecture for generating interactive stories.  Significant areas for future 

work still remain, both in connector-based multi-agent simulation, and in interactive 

stories.  From British novelist Mary Augusta Ward [Columbia, 1996]: 

The first law of story-telling... Every man is bound to leave a story better 
than he found it.  

With anticipation, this research leaves both fields of study better than when they 

were found. 
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APPENDIX A. EXAMPLE STORY 
 

This appendix is provided to depict the initial scenes of a story session.  It begins 

with the player defining a character and selecting a military occupational specialty 

(MOS).  Next it presents, in chronological order, the character’s arrival at basic training, 

initial wake-up the first morning, along with classroom and field training sessions. 

 

The player selects an actor and 

defines their character. 

 

 

 

 

 

 

 

 

The initial allotment of “core 

value” points is distributed among 

the seven core values. 
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The character’s initial goals are 

selected and prioritized. 

 

 

 

 

 

 

 

 

The character’s resources are 

adjusted.  This is possible at 

definition time only.  Once the 

story begins, it is no longer 

possible to manually adjust the 

resources.  They increase and 

decay based on the character’s 

actions and achievements. 

 

 

The player and character meet the 

recruiter. 
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The player selects the military 

occupational specialty of Field 

Artillery for their character. 

 

 

 

 

 

 

 

The character is sent to basic 

combat training (BCT). 

 

 

 

 

 

 

 

 

The character arrives at BCT and is 

welcomed by the drill instructor. 
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The recruits awake to the sound of 

a screaming drill instructor. 

 

 

 

 

 

 

 

 

In this classroom training scene, 

the player’s character has low 

energy resources and is falling 

asleep during the drill instructor’s 

lecture concerning the general 

orders of a sentry. 

 

 

 

 

The drill instructor wakes the 

player’s character, and tells him to 

stand in the back of the classroom 

in order to stay awake. 
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The player must adjusts their 

character’s goals and values in 

order to encourage the character to 

focus on their low resources.  The 

player tries to gain access to the 

character by clicking on the door 

of a quickly spinning ball.  As the 

player gains their character’s trust, 

the ball begins to slow down. 

 

The character’s goal of physical 

exercise will help to increase his 

strength and energy. 

 

 

 

 

 

 

 

The recruits are complimented by 

their drill instructor for 

successfully completing an 

assigned task. 
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The character’s initial attempt to 

qualify at the rifle range does not 

go well.  He needs to pay closer 

attention to detail. 

 

 

 

 

 

 

The character gets some 

encouragement and advice from 

his buddy before the next attempt 

to qualify. 

 

 

 

 

 

 

The character successfully 

qualifies on his second attempt. 
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The recruits proudly display their 

targets to the drill instructor.  
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APPENDIX B. ACRONYMS AND ABBREVIATIONS 
 

AA: Ops America’s Army: Operations 
AA: Soldiers America’s Army: Soldiers 
ABL A Behavioral Language 
ABT Active Behavior Tree 
AI Artificial Intelligence 
AIT Advanced Individual Training 
A-Life Artificial Life 
BCT Basic Combat Training 
CA Composite Agent 
CARTE Center for Advanced Research in Technology for Education at USC 
CMAS Connector-based Multi-Agent System 
DAI Distributed Artificial Intelligence 
DoD Department of Defense 
Einner Inner Environment 
Eouter Outer Environment 
ICT Institute for Creative Technologies at USC 
ISGS Interactive Story Generation System 
MAS Multi-Agent System 
MEPS Military Entrance Processing Station 
MFC Most Favorable Connection 
MOS Military Occupational Specialty 
MRE Mission Rehearsal Exercise 
MUD Multi-User Dungeon 
MVC Model-View-Controller 
NRC National Research Council 
OSUT One Station Unit Training 
PAM Plan Applier Mechanism 
PT Physical Training 
RA Reactive Agent 
SAM Script Applier Mechanism 
SCA Symbolic Constructor Agent 
SRS Scene Rendering Subsystem 
UML Unified Modeling Language 
USC University of Southern California 
VTP Virtual Theater Project at Stanford University 
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